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Abstract

Single-arm three wave interferometer for measuring dispersion in short lengths of fiber

Michael Anthony Galle
Master of Applied Science
Graduate Department of Electrical & Computer Engineering
University of Toronto
2007

A simple fiber-based single-arm spectral interferometer to measure the dispersion
parameter in short lengths (DL) of fiber (< 50 cm) with a measurement precision of
0.0001 ps/nm is developed. Dispersion is measured by examining the envelope of the
interference pattern produced by three interfering waves: two from the facets of the test
fiber and one from a mirror placed behind it. The operational constraints on system
parameters are discussed and a method for extending one of them is introduced.
Experimental verification of this technique is carried out via comparison of
measurements made on SMF28™ and DCF with those made using conventional
techniques. Moreover, this new technique is used to measure the dispersion of twin-hole

fiber for the first time.
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Chapter 1: Introduction

The design of photonic devices heavily depends on an accurate characterization of the
components used. One of the main components in a photonic device is an optical fiber
which serves as a low-loss medium for light transmission. An important characteristic of
fiber is the dispersion that light experiences as it travels inside the fiber. Dispersion is the
phenomenon that causes different frequencies of light to travel at different velocities. The
phenomenon of dispersion is commonly observed through the spreading of light by a
prism. When white light, which contains a broad spectrum of frequencies, enters a prism
the different wavelengths are bent at different angles since each frequency sees a
different index of refraction, a phenomenon first quantified by Newton in the 17th
century [1]. Inside a fiber this variation in the index of refraction with frequency is what
causes the frequency dependence of the velocity.

A more modern example of the phenomenon of dispersion is the affect it has on
the performance of photonic devices used in communication systems. In these systems,
dispersion, or more specifically second order dispersion, leads to a broadening of the
pulses used to represent 1 or 0 in a digital communication system. Pulse broadening
causes adjacent bits to overlap and leads to intersymbol interference [2]. Intersymbol
interference occurs when a pulse is broadened beyond its allocated bit slot to such an
extent that it begins to overlap with adjacent bits and it is no longer possible to determine

whether or not a specific bit contains a 1 or a 0. This effect is illustrated in Fig. 1-1:
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Fig. 1-1: Intersymbol interference caused by dispersion leads to reduction in system bandwidth.

As a result of intersymbol interference the allocated bit slots must be widened and
this effectively lowers the number of bits that can be transmitted in a given period of time
and reduces the system bandwidth [2]. As a result modern communication systems have
evolved methods to mitigate the effects of dispersion.

Current methods of countering the effects of dispersion in an optical fiber use
dispersion compensating devices such as chirped fiber Bragg gratings and dispersion
compensating fiber (DCF) [2]. In order to effectively use these techniques it is critical to
know the exact magnitude of the dispersion that is being compensated for. As a result
knowledge of the dispersion in both the transmission system and the dispersion
compensation system is critical to the design of the overall communication system.

For example, in order to determine the length of dispersion compensating fiber
required to compensate for the dispersion incurred in a span of standard single mode
fiber, one must know the dispersion in both types of fiber as well as the exact length of
single mode fiber for which the dispersion is to be compensated [2]. The dispersion in the

optical fiber can then be compensated by splicing a length of DCF given by:

_ I—Fiber | DFiber (2')|

Loor = Eq. 1-1[2]
P |Dpee (A)]
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D is known as the second order dispersion parameter which is a function of the
second order dispersion of the fiber. Its significance and its effect on an optical signal
will be discussed in detail in chapter 2.

Knowledge of dispersion in a fiber is also critical for the study of fiber based
nonlinear wave interaction phenomena. An optical soliton is a pulse that maintains a
constant shape (width) as it propagates along a fiber (first order soliton) or has a shape
that is periodic with propagation (higher order soliton) [3, 4]. This is due to the fact that
the effects of dispersion and self phase modulation (SPM) are in balance [4-5]. SPM is
the effect whereby the phase of a given pulse is modified by its own intensity profile [6].
Knowledge of the dispersion in an optical fiber allows for the determination of the
required intensity for the formation of an optical soliton. This effect has also been used in
the area of soliton effect pulse compression [5, 7, 8] where the combination of the
chirping effect of SPM and subsequent distributed compression effect of negative
dispersion is used to compress an optical pulse [7]. Knowledge of dispersion is also
important for the study of nonlinear effects such as second harmonic generation, three-
wave mixing and four-wave mixing since it determines the interaction lengths between
the various wavelengths. Dispersion is particularly important in techniques that aim to

extend this interaction length such as in Quasi Phase Matching (QPM) devices [9-11].

1.1 Motivation

The motivation for this thesis is to measure the dispersion parameter in short lengths of
optical fiber. More accurately the method is required to measure fiber with small
dispersion length products (DL). The initial need for a short length characterization

scheme came from the need to measure the dispersion of a type of specialty fiber known
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as the twin-hole fiber (THF) (Ch 5.6). This fiber is not easy to acquire and is expensive to
produce therefore the use of conventional dispersion measurement techniques requiring
long lengths of fiber (Ch. 3) are not possible. The principle reason for measuring the
dispersion in THF is to study nonlinear wave interaction phenomena in these fibers.
Knowledge of the dispersion was also of practical importance since we planned to use
QPM to increase the interaction length [9-11]. Short length characterization was also
required because the fiber geometry of THF is not uniform along its length which results
in a variation of the dispersion along the fiber length. The dispersion measurement on a
long length of fiber, therefore, is different than the dispersion in a given section of that
fiber. Typically only a small section of THF is used in QPM experiments and therefore
the dispersion of the specific section of THF used in the experiment must be measured.
Short length (small DL) characterization is not only required for THF but it is also
necessary for other types of specialty fiber as well. Photonic Crystal Fiber (PCF) [12-14],
for example, can be used for dispersion compensation (DC-PCF) [13]. For devices with
small dispersion length (DL) products, such as fiber laser cavities [3], the length of the
dispersion compensation fiber required is very short. As a result, it is necessary to
measure the dispersion in the exact section of DC-PCF that will be used in the system.
Recent advances in Microstructured fiber or PCF allow for a high degree of control over
the dispersion [14]. This has led to a need for experimental testing to determine how
close the dispersion in the fabricated device is to the predicted theoretical dispersion.
Experimental verification of the theoretical dispersion is less expensive when only short
lengths of this fiber are required and therefore it is both convenient and economical if

dispersion can be measured on short lengths of fiber.
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Gain fiber is another type of specialty fiber for which it is desirable to have a
short length dispersion measurement technique. Typically short lengths of gain fiber are
used to compensate for losses in a long haul optical transmission line [15]. The
dispersion in these short lengths of gain fiber must be known in order for dispersion
compensation schemes to accurately compensate for the dispersion produced in the entire
channel. The dispersion is of particular importance when these gain fibers are used to
make mode locked fiber lasers [4] since dispersion affects the group velocity of a pulse

within the cavity [2] it also affects mode locking schemes.

1.2 Objectives

The primary objective of this thesis is the development of a technique to measure the
dispersion parameter in fiber lengths below 50 cm (small DL products). The first
objective is to develop and test the technique by comparing its results with published (or

conventionally measured) dispersion parameter curves for SMF28™

and Dispersion
Compensating Fiber (DCF). Second, the theory for the technique will be further
investigated and operational constraints will be outlined. Third, the dispersion parameter
of Twin Hole fiber (THF) will be measured. The dispersion parameter for this fiber has
not yet been reported in the literature. The fourth and final objective is to show that this
technique is conducive to commercial development, since it can measure waveguides and
optical fibers from several centimeters to a few meters in length, without the

complications introduced by conventional interferometric dispersion techniques such as

the dual arm techniques.
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1.3 Organization of Thesis

This thesis is organized into six chapters. The first chapter introduced the topic of

dispersion and the motivation and objective behind this work. The second chapter

outlines the basic theory behind light propagation in a fiber and introduces the concept of
chromatic dispersion. It also outlines how both the material and the waveguide dispersion
are combined to yield the total chromatic dispersion in a waveguide. The third chapter

surveys the conventional techniques for measuring chromatic dispersion in optical fiber.

The fourth chapter describes the theory and limitations of the novel single arm
interferometer developed in this thesis for dispersion characterization of short length
optical elements. It also shows how some of these limitations can be relaxed so that a
larger range of fiber length can be characterized using the technique. The fifth chapter
describes the experimental results used to verify and implement the new technique.
Characterization is first performed on Corning SMF28™ since the dispersion curves are
well known and can be used to verify the validity of the theory and the technique. As a
second verification the technique is applied to dispersion compensating fiber. Once the
technique has been verified and tested it is used to characterize specialty fiber known as
Twin Hole Fiber for which the dispersion curves have not yet been reported. The sixth
chapter concludes the thesis by summarizing the benefits of the single arm interferometer
and by describing the contributions this new technology can make to the field of optical
characterization. The thesis is concluded with an examination of the future work that is

required in order to develop a commercial device from this technology.



Chapter 2: Theory on Chromatic Dispersion of a
Waveguide

Dispersion is the phenomenon whereby the index of refraction of a material varies with
the frequency or wavelength of the radiation being transmitted through it [1]. The term
‘Chromatic Dispersion’ is often used to emphasize this wavelength dependence. The total
dispersion in a waveguide or an optical fiber is a function of both the material
composition (material dispersion) and the geometry of the waveguide (waveguide
dispersion). This chapter outlines the contributions of both material and waveguide
dispersion, identifies their physical source and develops the mathematical terminology

for their description.

2.1 Dispersion in a Waveguide

When light is confined in an optical fiber or waveguide the index is a property of both the
material and the geometry of the waveguide. The waveguide geometry changes the
refractive index via optical confinement by the waveguide structure. The refractive index
is therefore a function of both the material and waveguide contributions. For this reason
in a fiber or a waveguide the index is known as an effective index.

The relationship between the effective index and the first, second and higher order

dispersion can be understood mathematically via a Taylor expansion:

2
d ng

dA?

3

dd;];ﬁ A + ..

dneff 2 3
neff =neff (Ao)+(ﬂ_ﬂo)v|ﬂ’o+(ﬂ’_ﬂ’o) |ﬂ’o+(l_;{‘o)

Eq. 2-1
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The first term in Eq. 2-1 represents the linear portion of the effective index as a
function of wavelength and shows how dispersion manifests itself in the wavelength
dependence of the phase velocity for a wave inside a medium. The relationship between
the first term and the phase velocity is described in Eq. 2-2:

C
neff (/10)

V,(4,)= Eq. 2-2 [3]

The second term in Eq. 2-1 is related to the group velocity of an optical pulse and
represents the first order dispersion. The group velocity is the velocity that the envelope
of an optical pulse propagates. It depends on a quantity known as the group index, Ng,
which is a function of both the index of refraction and the slope of the index of refraction
at a particular wavelength. The group velocity relates to the second term via Eq. 2-3
where c is the velocity of light in vacuum:

C C C

Vy(A)=——= =
’ o N(A)-2, 907,

dn
The third term in Eqg. 2-1 represents the variation in the group velocity as a

Eq. 2-3 [3]
2

function of wavelength. This variation in the group velocity is known as Group Velocity
Dispersion, GVD, which is related to the third term via Eq. 2-4, where X, is the particular

wavelength for which the GVD is calculated and c is the speed of light in vacuum:

A7 2, d°n,
GVD(&O):—Z;C{—T" dﬂj} Eq. 24 [2]

The term in the brackets in Eqg. 2-4 is known as the dispersion parameter, D,
which represents second order dispersion since it describes how the second derivative of

the effective index varies with respect to wavelength:
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A, d%n,
Dlte)==" dzzﬁ

Eq. 2-5 [16]

0

The dispersion parameter is important since it is related to pulse broadening
which critically limits the bit rate of a communication system. Eg. 2-6 shows how an

increase in the dispersion parameter directly relates to an increase in pulse broadening:
AT =D(4,)LAA Eq. 2-6 [2]

In Eg. 2-6 AA is the range of wavelengths traveling through the medium and L is
the length of the medium. The dispersion parameter, D(),), which is related to pulse
broadening, is the most significant parameter since it limits the bit rate of an optical
communication system.

The dispersion parameter of a waveguide such as an optical fiber is given by the
total dispersion due to both the material and waveguide contributions. The total
dispersion is the combination of the material dispersion and the waveguide dispersion and

thus the dispersion parameter of a waveguide is given by:

27¢c d (1
22 dw

\/—Gj = DM + DW Eq 2-7 [2]

The next two sections discuss the contributions that both material and waveguide

dispersion make individually to the total dispersion.
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2.2 Material Dispersion

Material dispersion originates from the frequency or wavelength dependent response of
the atoms/molecules of a material to electromagnetic waves. All media are dispersive and
the only non-dispersive medium is vacuum [1]. The source of material dispersion can be
examined from an understanding of the atomic nature of matter and the frequency
dependent aspect of that nature [1]. Material dispersion occurs because atoms absorb and
re-radiate electromagnetic radiation more efficiently as the frequency approaches a
certain characteristic frequency for that particular atom called the resonance frequency
[1].

When an applied electric field impinges on an atom it distorts the charge cloud
surrounding that atom and induces a polarization that is inversely proportional to the
relative difference between the frequency of the field and the resonance frequency of the
atom [1]. Thus the closer the frequency of the electromagnetic radiation is to the atoms
resonance frequency the larger the induced polarization and the larger the displacement
between the negative charge cloud and the positive nucleus. The relative displacement

between the electron cloud and the nucleus is given by the Lorentz Oscillator Model [1]

as:
x—_Ge/me Eq. 2-8 [1]
(6002 _(02) |
The induced polarization is given by:
P=q,x
Eq.2-9[1]
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The index of refraction is given by the relationship between the induced
polarization and the incident electric field. It is known as the dispersion equation [1] and

is given by Eq. 2-10:

= 2

&, & E &M, -

In this equation n(w) is known as the absolute index of refraction [1] since it is the
index of refraction seen by light of frequency w in bulk media. It illustrates
mathematically how the index of refraction varies for different frequencies (wavelengths)
according to how close they are to a resonance frequency of the atom.

Given this knowledge of n(w), the group index of the material can be determined
via Ng =n(e,) + @, dn/dco‘% =n(4,) — 4, dn/dﬂu‘io . The material dispersion is then
determined by taking the derivative of the group index of the material with respect to

wavelength or equivalently the second derivative of the absolute index with respect to

wavelength:

D,, zldNG __A d_2n Eq. 2-11[2]
c di cldr?

2.3 Waveguide Dispersion

Waveguide dispersion occurs because waveguide geometry variably affects the velocity
of different frequencies of light. More technically, waveguide dispersion is caused by the
variation in the index of refraction due to the confinement of light an optical mode [3].
Waveguide dispersion is a function of the material parameters of the waveguide such as

the normalized core-cladding index difference, A = (N, — Nyadging)/Noore » @NC
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geometrical parameters such as the core size, a [2, 17]. The index in a waveguide is
known as an effective index, nes, because of the portion of the index change caused by
propagation in a confined medium.

Confinement is best described by a quantity known as the V parameter, which is a
function of both the material and geometry of the waveguide. The V parameter is given

by Eq. 2-12:

\ (l) = 2777:3-(r\200re - r]zcladding)ll2 = Z—ﬂancore\/ 2A Eq. 2-12 [2]

Propagation in a waveguide is described by a quantity known as the normalized
propagation constant, b, which is also a function of the material and geometry of the
waveguide. This quantity is given in Eq. 2-13:

N, —nN ;
b= off cladding Eq. 2-13 [2]

n n

core  ''cladding

The contribution of the waveguide to the dispersion parameter depends on the
confinement and propagation of the light in a waveguide and hence it is a function of
both the V parameter and the normalized propagation constant, b. The waveguide

dispersion can be calculated via knowledge of V and b via Eq. 2-14:

27| N 26 (cladding Vd ? (VD) N AN ?G(cladding d (VD)

D, =
Yo 2 n o dv? do dv

Eq. 2-14 [2]
cladding

In most cases the main effect of the waveguide dispersion in standard single
mode fibers is a reduction in dispersion compared to dispersion in bulk [2]. In

comparison to material dispersion the contribution of waveguide dispersion is quite small
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and in most standard single mode fibers it only shifts the zero dispersion wavelength

from 1276nm to 1310nm [2]. This effect is illustrated in Fig. 2-1:

Dispersion [ps/(km-nm))

] I |
1.4 1.5 1.6 1.7

Wavelength (um)

Fig. 2-1: Contributions of both waveguide and material dispersion [2]

In summary, the dispersion in a waveguide or an optical fiber is caused not only by the
material but also by the effect of confinement and propagation in the waveguide. Thus
accurate knowledge of the dispersion in a waveguide cannot be made by simple
knowledge of the material dispersion but must include the effect of the waveguide. As a
result either the dimensions of the waveguide must be known to a high degree of
accuracy so that the waveguide dispersion can be calculated (which is not easy since
fabrication processes are hardly perfect) or the dispersion must be measured empirically.

Accurate measurement of the (total) dispersion parameter, D, is critical to the design of
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photonic systems. Measurement techniques for the determination of the dispersion

parameter will now be discussed in the next chapter.



Chapter 3: Conventional Measurement Techniques

There are 3 categories of dispersion measurement techniques: Time of flight (TOF) [18],
Modulation phase shift (MPS) [17, 19] and Interferometric [16]. TOF and MPS are the
most widely used commercial dispersion measurement techniques. Interferometric
techniques are not widely used commercially but have been used in laboratories for
dispersion measurements. Interferometric techniques come in two forms; temporal and
spectral. This chapter surveys the existing techniques, their advantages and disadvantages
and concludes with a quantitative comparison of the various dispersion measurement

techniques in terms of measurement precision and fiber length requirements.

3.1 Time of Flight Technique

In the TOF technique the second order dispersion parameter, D, hereafter referred to
simply as the dispersion parameter, can be determined either by measuring the relative
temporal delay between pulses at different wavelengths or by measuring the pulse
broadening itself. The relative temporal delay between pulses at different wavelengths is
measured to determine the group velocity which can then be used to determine the
dispersion parameter using Eq. 3-1:

At

D(4,) :m

Eq. 3-1 [16]

The above equation can also be used to determine the dispersion parameter from
the pulse broadening itself if At is the measured pulse broadening and AA is the

bandwidth of the wavelengths in the puilse. The measurement precision achievable by the

15
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TOF technique is on the order of 1 ps/nm [17]. The setup for such a system is shown in

the Fig. 3-1:

Tunable Laser @ A;

Detector (t,)

Tunable Laser @ A, Detector (t)

Fig. 3-1: Time of flight dispersion measurement technique

One of the main problems with the TOF technique is that it generally requires
several kilometers of fiber to accumulate an appreciable difference in time for different
wavelengths. Another issue with the TOF technique when the pulse broadening is
measured directly is that the pulse width is affected by changes in the pulse shape which
leads to errors in the measurement of the dispersion parameter. As a result, in order to
measure the dispersion parameter with a precision near 1 ps/nm-km several kilometers of
fiber are required [16]. Another long fiber measurement technique is now discussed in the

next section.

3.2 Modulation Phase Shift Technique

The MPS technique is another dispersion characterization technique that requires long
lengths of fiber. In the MPS technique, a continuous-wave optical signal is amplitude
modulated by an RF signal, and the dispersion parameter is determined by measuring the
RF phase delay experienced by the optical carriers at the different wavelengths. A

diagram of the experimental implementation of this technique is shown in Fig. 3-2:
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— Amplitude Modulated Envelope

RF
analyzer

Tunable Laser @ A; Detector

Carrier @ My

Carrier @ A, —>

Fig. 3-2: Modulation Phase Shift Dispersion Measurement Technique

The RF phase delay information is extracted by this technique, and by taking the
second derivative of the phase information, the dispersion parameter can be determined.
Measurement precision achievable by the MPS technique is on the order of 0.07 ps/nm
[20]. Due to its higher precision, MPS has become the industry standard for measuring
dispersion in optical fibers. However, MPS, has several disadvantages. The first is that it
IS expensive to implement since the components required such as an RF analyzer and a
tunable laser, are costly. The second is that its precision is limited by both the stability

and jitter of the RF signal [21, 22].

MPS has several limitations on the minimum device length that it is capable of
characterizing. In the MPS method the width of the modulated signal limits the minimum
characterizable device length. This method also typically requires fiber lengths in excess
of tens of meters to obtain a precision to better than 1 ps/nm-km [16]. Therefore it is not
desirable for the characterization of specialty fibers or gain fibers [23], of which long
fiber lengths are expensive to acquire or not available. Also, when fiber uniformity
changes significantly along its length, the dispersion of a long span of fiber cannot be

used to accurately represent that of a short section of fiber. In such cases, dispersion



Chapter 3: Conventional Measurement Techniques 18

measurement performed directly on short fiber samples is desirable. As a result a

technique for measuring the dispersion of short lengths of fiber is desired.

3.3 Dispersion Measurements on Short Length Fiber

Interferometric techniques are capable of characterizing the dispersion on fiber lengths
below 1m [16] (fiber with small DL products). There are two categories of
interferometric techniques for making dispersion measurements on fiber of short length:
temporal and spectral. These two categories will be discussed in detail in the following

sections.

3.3.1 Temporal Interferometry (Fourier Transform Spectroscopy)

Test
B. Band Source Fiber Ul
g u2 ?
Coupler _
Detector Coupler 0 ? ﬂ Mirror
Lens
H

Tracking Laser

Fig. 3-3: Experimental setup for dual arm temporal interferometry

Dual Arm temporal interferometry employs a broadband source and a variable optical
path to produce a temporal interferogram between a fixed path through the test fiber and
variable air path. It involves moving one arm of the interferometer at a constant speed
and plotting the interference pattern as a function of delay length (time) [23-32]. The
spectral amplitude and phase are then determined from the Fourier transform of the

temporal interferogram. A sample temporal interference pattern is shown in Fig. 3-4:
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Intensity (au.)

Delay length (micron)
Fig. 3-4: Sample Temporal Interferogram [24]

A temporal interferogram gives the phase variation as a function of time. The
spectral phase variation can be extracted from the temporal interferogram if a Fourier
Transform is applied to it. The spectral phase contains the dispersion information which
can be indirectly obtained by taking the second derivative of the spectral phase. A
precision of 0.0015 ps/nm measured on a 0.814-m-long photonic crystal fiber [29] was
recently reported using temporal interferometry. The main disadvantage of temporal
interferometry is that it is susceptible to noise resulting from both translation inaccuracy
and vibration of the optics in the variable path. A tracking laser is typically required to
calibrate the delay path length [26, 29]. Another problem with this technique is that a
second derivative of the phase information must be taken to obtain the dispersion
parameter which means that it is less accurate than a method that can obtain the
dispersion parameter directly. A method for obtaining the dispersion parameter directly is

now discussed in the next section.
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3.3.2 Spectral Interferometry

Spectral interferometry, like temporal interferometry, is capable of characterizing
the dispersion in short length fiber (< 1m) (or fiber with a small DL product). In spectral
interferometry, instead of stepping the length of one of the arms, a scan of the wavelength
domain performed to produce a spectral interferogram. Spectral interferometry is
generally more stable than temporal interferometry since the arms of the interferometer
are kept stationary. Thus it is simpler than temporal interferometry since no tracking laser
IS necessary.

There are two types of spectral interferometry, one is general and does not require
balancing, and another, the special case, is ‘balanced’. In the balanced case it is possible
to directly measure the dispersion parameter from the interferogram. This makes it more
accurate than temporal interferometry and it is for this reason that spectral interferometry
is discussed as a dispersion measurement technique. We first examine the more general

case of spectral interferometry.

General Case: Unbalanced

In general spectral interferometry the dispersion parameter is obtained from the
interference spectrum produced by two time delayed light pulses/beams in an unbalanced
dual arm interferometer. Two pulses/beams from the two arms of the interferometer are
set up to interfere in a spectrometer and a spectral interferogram is produced. The

interference pattern produced for a given time or phase delay is given by:
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| (©) =|E, () + E(w)exp(i7)|’
=|E, (o)’ +|E(@)|" +E, (0)E(w)exp(iwr) + E, (0)E" () exp(~icwr)

=|E, (o) +|E(@)|" + f (0)exp(i07) + " (w)exp(-iwr)
Eq. 3-2 [33]

The last two terms in Eq. 3-2 result in spectral interference pattern via a

cos(A¢(w) + wr) term. This interference pattern is seen in Fig. 3-5.
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Fig. 3.5: Interference pattern produced by two time delayed pulses [34]

There are several ways to extract the phase information from the cosine term but

the most prevalent way to do so is to take the Inverse Fourier transform of the spectral

interference pattern. Note that f(w)=F.T.f(t)=

E% (co)E(a))‘exp(iA¢(a))) [33] contains
all the phase information on the spectral phase difference A¢(w) . Therefore, if f(w) can

be extracted from the interference pattern then the phase difference information can be
known. If an Inverse Fourier Transform of the spectral interference is performed on the

interference pattern the following is obtained:

FT. (I(@)=E () ®E, () +E () ®E(t) + f(t—7) + f (-t —17)"
Eq. 3-3[33]
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If all terms except the f(t—7)term get filtered out via a band pass filter then the
phase information can be extracted from a Fourier Transform on f (t—z) . A graphical

description of this process is given in Fig. 3-6:

Trrr [ rvrr T rrrrprrrr v r 1o v F 17
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Fig. 3-6: Filtering out all but the f(t-z) terms so that the phase information can be extracted [34]

1
Wl

The phase information can then be extracted if a Fourier Transform is applied to

the filtered component f(t-z) to transfer it back to the spectral domain. The complex

amplitude therefore becomes f (w) = |E, (w)||E(w)|exp(iA¢(w) + wr) [33, 34]. The phase

of this complex amplitude minus the linear part (wt) that is due to the delay, yields the
spectral phase difference between the two pulses as a function of ® and is independent of
the delay between the two pulses [33, 34]. In this way the phase difference between the
two pulses can be obtained. A sample plot of the amplitude and phase information

retrieved using this method is shown in Fig. 3-7:
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Fig. 3-7: Amplitude and phase spectrum of f{w) [34]

If one of the pulses travels through a non-dispersive medium such as air and the
other pulse travels through a dispersive medium such as an optical fiber then the phase
difference spectrum will be directly related to the dispersion in the fiber. Thus the
dispersion parameter plot can be determined by taking the second derivative of the phase
difference spectrum with respect to wavelength.

The main issue with this form of spectral interferometry, however, is that the
dispersion parameter is not determined directly but rather via a second order derivative of
the phase information with respect to wavelength. Therefore, like temporal
interferometry, this general unbalanced form of spectral interferometry is not as accurate
as the method capable of measuring the dispersion parameter directly which will be

discussed in the next section on balanced interferometry.
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Special Case: Balanced

In balanced spectral interferometry the arm lengths of an interferometer are kept constant
and they are balanced for a given wavelength called the central wavelength such that the
group delay in both arms is the same. This allows for the removal of the effect of the
large linear dispersion term in the interferogram. Balanced interferometry measures the
dispersion parameter D at the wavelength at which the group delay is the same in both
arms. This wavelength is henceforth referred to as the central wavelength. The
dispersion parameter in this case can be directly determined from the phase information
in the spectral interferogram without differentiation of the phase. For this reason it is
more accurate than both unbalanced general spectral interferometry and temporal
interferometry. As a result balanced spectral interferometry is often used to obtain
accurate dispersion measurements in short length waveguides and fibers. A precision of
0.00007 ps/nm has been reported on a 1 m long SMF using this technique [16]. The

experimental setup for balanced spectral interferometry is shown in Fig. 3-8.

Broadband
source

Fig. 3-8: Experimental setup for Spectral Interferometry

A sample spectral interference pattern produced from the setup in Fig. 3-8 is

shown in Fig. 3-9. The central wavelength can be seen in this interferogram and is
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labeled A . The dispersion parameter can be determined at the central wavelength, /A”t
from the phase information given by the wavelength separation between the

peaks/troughs of the interferogram [16].
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Fig. 3-9: Sample spectral interferogram [16]

Both forms of spectral interferometry are considered to be less susceptible to
noise since the arms of the interferometer are kept still and there are no moving parts. It is
for this reason that spectral interferometry in general is considered to be more accurate
than temporal interferometry. Spectral interferometry is therefore considered to be the
technique of choice for measuring the dispersion of photonic components [34-37] and
spectral depth resolved optical imaging [38, 39]. One well known and important class of
spectral interferometry is optical coherence tomography (OCT) [40-45].

The resolution of balanced spectral interferometry, in particular, can be improved
by replacing the combination broadband source and Optical Spectrum Analyzer shown in

Fig. 3-8 with a tunable laser and detector system. Current tunable laser technology allows
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for a bandwidth of 130 nm and a 1 picometer resolution. This improves the range of fiber
lengths that can be measured using this technique. Also of note is that the use of tunable
lasers for dispersion measurement is becoming more widespread [46] as they decrease in

cost.

Balanced dual arm spectral interferometers are typically in a Michelson or a Mach
Zehnder configuration in which the path lengths are equalized at the given wavelength in
which the dispersion is to be measured [23, 24, 32]. The most often used configuration,
however, is the Michelson and the discussion that follows considers the Michelson
interferometer. In a balanced Michelson interferometer the dispersion is measured from
the interference between two waves: one that passes through the test fiber and another
that passes through an air path. Balancing the air path length with the fiber eliminates the
effect of the group index of the fiber in the interference pattern. This allows for the
measurement of the second derivative of the effective index with respect to wavelength

directly from the interference pattern [16].

The main disadvantage of this configuration is that, for this to work, two types of
path balancing must occur simultaneously. The first type of path balancing is coupler arm

balancing illustrated in red in Fig. 3-10:

B. Band Source

Fig. 3-10: Balanced path requirements for a Michelson interferometer
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The path lengths of both arms coming out of the coupler (highlighted in red) need
to be balanced exactly or an extra set of interference fringes will be created from the

reflections at the two end facets of the coupler arms as shown in Fig. 3-11.

o R
B TR
= 2

Lens

>

Fig. 3-11: Interference of the coupler arm reflections

B. Band Source

Coupler

The second type of balancing is test fiber-air path balancing to ensure that the
group delay in the air path exactly equals that of the fiber for a given central wavelength.
This ensures that the central wavelength in the interference pattern is within the viewable

bandwidth of the OSA.

The main problem in implementing a Michelson interferometer is that the arms of
the coupler cannot be balanced exactly and as a result the effect of the extra set of
reflections produced at the coupler facets cannot be removed.

One method of canceling out the extra set of fringes produced at the facets of the
coupler arms is by having a relatively long difference between the coupler arms as shown

in Fig. 3-12:



Chapter 3: Conventional Measurement Techniques 28

B. Band S ? e
. ban ource

_ E—
10 EI u2

? Mirror

Fig. 3-12: Fringe cancellation technique for a Michelson interferometer
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This fringe cancellation technique, depicted in Fig. 3-12, dramatically reduces the
period of the fringes produced by the extra set of reflections from the coupler facets to a
level in which they are smaller than the resolution of the OSA. As a result they become
low-pass filtered by the OSA and do not show up in the plot of the interference. This
technique, however, requires compensation of the added dispersion due to the optical
path difference between the coupler arms. To do this, however, requires knowledge of the
exact difference in length between the two arms of the coupler and the exact dispersion
parameter curve for the arms of the coupler. Both of which are generally not easy to
determine accurately. Also of note is that this technique requires a much longer air path
which introduces more noise into the measurement due air path disturbances.

As a result of the difficulties inherent in the fringe cancellation technique I will
introduce a new method (which is a subset of balanced spectral interferometry) for the
measurement of dispersion. This new method, known as Single Arm Interferometry, will
not require the cancellation of any extra fringes as was the case for the Michelson. In the
next section | compare the performance of Single Arm Interferometry to the conventional
techniques in order to show how it is a natural progression in the development of

dispersion measurement technology. The performance of Single Arm Interferometry is
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introduced before the details of the technique are described in order entice the reader

study the technical/theoretical discussion in chapter 4.

3.4 Comparison of Dispersion Measurement Techniques

There have been several techniques developed for the measurement of chromatic
dispersion in fiber. Especially important are those developed for the measurement of
short lengths of fiber [16, 47]. One reason that short length characterization techniques
are important stems from recent developments in the design and fabrication of specialty
fiber.

Specialty fiber such as Twin Hole Fiber (THF) [48] and Photonic Crystal Fiber
(PCF) [29] have made short length fiber characterization desirable due to their high cost.
Because of this it is not economical to use TOF and MPS techniques to characterize these
types of fiber. Another impetus for short length characterization comes from the fact that
in many specialty fibers the geometry is often non-uniform along its length. As a result of
this non-uniformity the dispersion in these fibers varies with position. Thus measurement
of the dispersion in a long length of this fiber will be different than that measured in a
section of the same fiber.

In the last few sections several dispersion measurement techniques have been
discussed and it has been shown that it is desirable to seek a short length characterization
scheme. The techniques discussed for short length dispersion characterization were
temporal and spectral interferometry. Temporal interferometry and unbalanced general
spectral interferometry are both capable of characterizing short length fiber, however,
since they obtain the dispersion parameter indirectly via second order differentiation of

the phase term they are not as accurate as balanced spectral interferometry which directly
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measures the dispersion parameter. As a result the technique of choice for dispersion
measurement is balanced spectral interferometry since it will provide the most accurate
measurements. As a result the new technique will employ balanced spectral
interferometry.

The two important parameters in comparing dispersion measurement techniques
is the minimum device length that each is capable of characterizing and the precision to
which the characterization is achieved. It is generally desirable to characterize as short a
fiber as possible with as high a precision as possible. It is also desirable to perform the
measurement in the simplest way possible. A summary of the length requirements and the

precision of the various dispersion measurement techniques is summarized in Table 3-1:

Table 3-1: Summary of the various dispersion measurement techniques and their precision

Technique Mgﬁ)ur;es FIEEEE Reference Comments
a (Shortest length)
Time of Flight 1 )

(Film laser pulse) No 1psnm™ (7.8 m) 40 -Need km’s of fiber
Modulation 0.1 ps nm-1 (1.2 km) [19] -Need 10’s of meters of fiber
Phase Shift No 0.07 ps nm™ (Agilent 19, 20, 22 | -System is expensive esp. RF

86038B ) [20] components
-Noise due to translation of
Temporal 0.01 ps nm™ (1 m) [16], mirror:
-1 - apy -
Interferometry Yes <1 m 0.0015 ps nm™ (0.814m) 16, 49 -Step_pmg accuracy, driftin
[49] position, vibration
-Less accurate, Indirect
measure of D
Dual Arm 0.00007 ps nm’ -No moving parts.e less noise
Spectral -More accurate, directly
Yes<lm (1Im) 16
Interferometry measures D
(Balanced) -Technique of choice
Single Arm
Interferometry -Subset of Balanced Sl but
(Balanced 1 . simpler
Spectral Yes <0.5m | 0.0001 ps nm~ (0.395m) | This work Details in the next chapter
Interferometry)

*Note that in calculating the resolution of the Single Arm Interferometry technique the standard deviation of the
measurement for single mode fiber (0.28 ps/nm-km) was multiplied by the length of SMF used (0.000395 km).
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In the summary given in Table 3-1 it is evident that the order of magnitude for the
measurement in dual arm spectral interferometry [16] is the same as the order of
magnitude reported for Single arm Interferometry. The technique used in single arm
interferometry, however, is significantly simpler as will be shown in the next chapter.
The next chapter introduces the theory and implementation of Single Arm Interferometry

and outlines the parameters affecting performance.



Chapter 4: Theory of Single Arm Interferometry

A Single Arm Interferometer (SAI) can be produced by folding the two arms of a
Michelson interferometer together into a common path (as in a common path
interferometer) and placing a mirror behind the test fiber. This configuration was
designed to eliminate the calibration step required by dual arm interferometers in which
the coupler arms are made to be disproportionate in length to eliminate the effect of the
extra reflections from the coupler-test fiber/coupler-air path facets. Since calibration is

not required this technique is also more accurate than a dual arm interferometer.

4.1 A New Concept

This chapter introduces a balanced Single-Arm Interferometer (SAI) for the direct
measurement of dispersion in short fibers. A balanced SAI is depicted in Fig. 4-1. This
configuration is not only much simpler than a dual arm interferometer but it also
eliminates the need for system calibration (assuming the dispersion introduced by the
collimating lens is negligible and the air path is stable). Its simpler construction also

makes it less susceptible to polarization and phase instabilities.

32
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Fig. 4-1: Single-arm interferometer where three waves interfere; Uo, U1 and U3.

The SAl is a balanced interferometer since the group delay in the fiber is the same
as the group delay in the air path. It will be shown mathematically that this balancing of
the group delay in each path allows the dispersion parameter to be measured directly
from the interference pattern. The conceptual difference between SAI and Dual Arm
interferometers is that, in SAI, the interference pattern is produced by three waves: two
from the reflections at the facets of the test fiber and one from a mirror placed behind it
(as shown by U,, Uy, and U, in Fig. 4-1). The beating between the interference fringes
produced by the test fiber and those by the air path generates an envelope which is
equivalent to the interference pattern produced by two waves (U; and U, in Fig. 4-1) in a
dual-arm interferometer.

From the phase information in this envelope the dispersion parameter can be
extracted. Both dual and single arm balanced interferometers have in common this ability
to directly measure the dispersion parameter from the interference pattern.

The SAI configuration appears similar to common path interferometers, often

used for depth imaging as in Common-Path Optical Coherence Tomography (CP-OCT)
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[50, 51]. The SAI, however, is fundamentally different from CP-OCT since it utilizes 3
reflections, and extracts the dispersion parameter directly from the envelope of the
interference pattern. The main difference between common path interferometers and
single arm interferometers is the fact that there is a path balancing of the group delay in
the fiber path and the air path. The differences between the Michelson Interferometer,

CP-OCT and balanced Single Arm Interferometry are outlined in Table 4-1:

Table 4-1: Differences & Similarities between the Michelson Interferometer, CP-OCT and the Single
Arm Interferometer

Balanced CP-OCT Balanced SAI
Michelson (Common path)
Interferometer
# of interfering 2 2 3
waves
# of longitudinally 2 1 1
separate paths
Path balancing yes no yes
Dispersion entire interferogram n/a envelope of
information interferogram
Dispersion directly n/a directly
parameter measured
Measures dispersion optical path length dispersion
parameter difference parameter

In the next section, we will briefly present the theoretical representation of the
interference pattern, the phase between the adjacent peaks/troughs of the envelope, and

its relationship to the dispersion.

4.2 Mathematical Description

4.2.1.1 Equal Amplitude Case

Dispersion measurements can be made using a single-arm interferometer by extracting
the second derivative of the effective index with respect to wavelength from the envelope

of the interference pattern generated by three waves U,, U; and U, depicted in Fig. 4-2:
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Fig. 4-2: Interference when reflections from the facets and mirror have equal amplitudes

The extra reflection from the source fiber is eliminated using angle polished fiber
as shown in Fig. 4-2. Note that this method is insensitive to the loss introduced by the
angle polished connector since the dispersion information is contained within the phase
of the three reflected waves. The optical path length of the air path is made to cancel out
the strong linear effective group index term of the test fiber at a central wavelength, A,.
The amplitudes of U, and U, are assumed to be equal to the magnitude of the reflection at
the fiber end facets. The amplitude of U, depends on the amount of light coupled back to
the fiber. This coupling efficiency can be adjusted by varying the alignment of the mirror

such that U, has the same amplitude as U, and U;. In this simplified presentation:

Eq. 4-1

In Eq. 4-1, Ls and L, are the lengths of the test fiber and the air path, respectively.
B and k, are the propagation constant of the fundamental mode in the fiber and the
propagation constant in free space. The interference pattern is produced by the

interference of the three reflections is given by Eq. 4-2:
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l, =[Uy +U, +U,[°
=U,2(3+2c0s(2L, + 2k, L,,) +4cos(AL, +k,L,,)cos(AL; —k L))

0 —air

Eq. 4-2
Eq. 4-2 contains two fast terms, with a phase ¢, = (AL, +k,L,;) and
¢, =2(pL; +k,L,,). Since ¢, is slower than ¢, it will amplitude modulate the faster
term. As a result the period of the ‘carrier’ will be that of the slowest of the fast terms,
Dearvier = @1 - This carrier is then itself amplitude modulated by the slower term

Penvetope = (BLs —K, L) to produce the ‘envelope’ of the interference pattern. This

envelope is equivalent to the interference pattern produced by Michelson interferometer

[16] and it can be written as:

U, *(5+ 41005 (@neop0)) Eq. 4-3

nvelope)

The calculated interference pattern generated by the setup for a 39.5 cm SMF28™
test fiber is shown in Fig. 4-3. It depicts the envelope function (highlighted) which is a

good approximation of the envelope of the actual envelope of the carrier.
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Fig. 4-3: Calculated 3 wave interference pattern and envelope for a 39.5 cm piece of SMF28™
Applying a Taylor expansion to the phase of the slow envelope and replacing g
with 27, //1 , Where ne is the effective index of the fiber, gives the phase relation in Eq.

4-4.

dngg

1
¢envelope(ﬁ’) =27 z[{neﬁ (ﬂ’o) - ﬂ‘o di

dngg
Lf - Lair + Lf
. dA

Z

L (A=2)" d'ng (A=2,)° N |
oai d7 | o d7 |
4o 4o

Eq. 4-4

The first term in EQ. 4-4 (in the square brackets) disappears when L, is adjusted
to balance out the group delay of the test fiber at A, the balanced wavelength. Taking the

difference between the phases at two separate wavelengths; A; and A, results in [16]:
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A¢envelope = ¢envelope(ﬂ’2 )_ ¢envelope(2‘1x
=2 {(ﬁ“z_&o)2 _(ﬂl_ﬁ“o)z—ldzneff _{(/12—10)3 _(,11_10)3—‘d3neﬁ L,
A4 7 N R P 3k |7 |,
=Mr
Eqg. 4-5

Note that m is the number of fringes between the two wavelengths. If this phase
difference is taken using a different pair of peaks/troughs (i.e. A3 & A4) the result is a

system of equations in which dZneﬁ/df‘ and d3neﬁ/df‘ can be solved directly [16]. Since
2o 2o

the troughs in the interference pattern are more sharply defined it is more accurate to
choose the wavelength locations of the troughs of the envelope as the wavelengths used
in Eq. 4-5.

Note that, if we ignore the third-order dispersion, then only two wavelengths (e.g.,
A1 and ;) are required to calculate the second-order dispersion. This, however, would be

less accurate. The dispersion parameter D can then be found as follows:

A, d’n,
Dl == 47 |

Eq. 4-6

The next section presents a more general analysis of the interference pattern and
details the effect of having variable reflection magnitudes from each of the facets. It will
show how the variation in the magnitude of the reflections has no effect on the phase
information in the envelope and as such the simplified analysis presented here is

generally applicable.
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4.2.1.2 Unequal Amplitude Cases

To prove that this method is insensitive to the loss introduced by the angle polished
connector since the dispersion information is contained within the phases of the three
reflected waves we will now show the effect that is obtained if the reflections do not have
equal magnitudes. The interference pattern produced by three reflections with unequal
amplitudes is not as simple as presented in the previous section. Here we show that
despite this fact the previous results still hold since the locations of the troughs of the
envelope, which are used to obtain the dispersion information, remain the same even
though the fringe contrast varies.

In general the reflections from the facet and the mirror, shown in Fig. 4-2, do not
have the same magnitude and we express the magnitudes of the reflections in terms of the
first reflection in the following way.

U, =aUe "

U _ bU e_jzﬁl-f_jZkOLair
2 = 0
In Eqg. 4-7 L; and L4, are the lengths of the test fiber and the air path, respectively.

Eq. 4-7

B and k, are the propagation constant of the fundamental mode in the fiber and the
propagation constant in free space. ‘a’ is the fraction of the amplitude reflected from the
second facet in terms of the first and ‘b’ is the fraction of the amplitude reflected from the
mirror in terms of the fraction reflected from the first facet. The interference pattern of
the spectral interferogram can be expressed as:

I, =U, +U, +U,|°

=U_*{l+a® +b? +4acos(pL, +k,L,, )cos(BL, —k,L,,)

+2a(b-1)cos(2k,L,, ) +2bcos(2(AL, +k, L, )}
EqQ. 4-8
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The expression in Eq. 4-8 can be treated as a fast-varying “carrier” (with respect
to frequency or wavelength) modified by an upper and a lower slow-varying envelope, as
shown in Fig. 4-3, which depicts the simulated spectral interferogram generated by the 3-
wave SAI with a 39.5-cm SMF28 fiber as the test fiber. Upon closer examination (Fig. 4-
3, lower right), the “carrier” is not a pure sinusoidal function, because there are three fast-
varying phases in Eq. 4-8, 2(fLs + KoLair), (ALt + KoLair), and 2KqLair, all of which vary
much faster than the phase of the envelope (@nvelope), Which equals ALt — KoLair. When y
is large (>0.5), it can be shown that the upper envelope is approximated by

U02(1+ a’ +b? +2a(b —1) + 2b + 4alcos(g, ) Eq. 4-9

velope)

It will now be shown that although the magnitude of the interference pattern is not
the same as the envelope for cases in which b =1, the peak and trough locations of the
two match exactly. As a result the phase information of the interferogram is preserved
and the dispersion information can be extracted from the interferogram. Note that a = b=1
is a special case of this more general analysis and was presented in the previous section.
Several cases will be shown for the variation in the magnitudes of the reflections from
each of the facets. The Matlab code used to generate these interference patterns is
presented in Appendix A.1.

The first few cases will be shown to determine the effect of the variation of a
while keeping b constant. Figs. 4-4 to 4-6 show that the variation of a does not change
the interference pattern and the envelope in Eq. 4-3 still matches the upper peaks
interference pattern produced using Eq. 4-2. In the figures below the envelope function as

determined by Eq. 4-9 is plotted along with the fringe pattern to show that it is a good
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approximation of the actual upper envelope of the carrier and that the locations of the

peaks and troughs are the same.

Int ensity (a.u.)

1.58 1.6 1.62 1.64

D 1 1
15 1.52 1.54 1.56
lambda (m) % 10«5

Fig. 4-4: Simulated interference pattern produced by the setup in Fig. 4-1 for a 30-cm-long SMF28™
test fiber, with a =0.9, b =1. The parameters used for the SMF28™ is published in [Appendix B]. The
envelope calculated by Eq. 4-9 is superimposed on the fringe pattern in a thick line, which is a close
approximation of the upper envelope.
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Fig. 4-5: Simulated interference pattern produced by the setup in Fig. 4-1 for a 30-cm-long SMF28™

test fiber, with a =0.4, b =1. The parameters used for the SMF28™ is published in Appendix B. The
envelope calculated by Eq. 4-9 is superimposed on the fringe pattern in a thick line, which is a close
approximation of the upper envelope.
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Fig.4-6: Simulated interference pattern produced by the setup in Fig. 4-1 for a 30-cm-long SMF28™

test fiber, with a =0.1, b =1. The parameters used for the SMF28™ is published in [Appendix B]. The
envelope calculated by Eq. 4-9 is superimposed on the fringe pattern in a thick line, which is a close
approximation of the upper envelope.

The next few cases will show the effect of a variation of b while keeping a
constant. Figs. 4-7 to 4-9 show that the variation of b does change the magnitude of the
interference pattern and the magnitude of the envelope in Eg. 4-9 does not match the
upper peaks of the interference pattern produced using Eq. 4-8 but that the phases of both
equations still match. Since the dispersion information is contained within the phase of

the interference pattern it can still be used as in section 4.3.1 to determine the dispersion.
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Intensity (a.u.)

U 1 1
15 1.52 1.54 1.56 158 1.6 1.62 1.64
lambda (m} % 106°

Fig. 4-7: Simulated interference pattern produced by the setup in Fig. 4-1 for a 30-cm-long SMF28™
test fiber, with a =1, b =0.9. The parameters used for the SMF28™ is published in [Appendix B]. The
envelope calculated by Eq. 4-9 is superimposed on the fringe pattern in a thick line, which is a close
approximation of the upper envelope.
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Fig. 4-8: Simulated interference pattern produced by the setup in Fig. 4-1 for a 30-cm-long SMF28™

test fiber, with a =1, b =0.4. The parameters used for the SMF28™ is published in [Appendix B]. The
envelope calculated by Eq. 4-9 is superimposed on the fringe pattern in a thick line, which is a close
approximation of the upper envelope.
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Intensity (a.u)

1.5 1,62 1.54 1.56 1.68 16 1,62 1.64
lambda (m) X 10°

Fig. 4-9: Simulated interference pattern produced by the setup in Fig. 4-1 for a 30-cm-long SMF28™
test fiber, with a =1, b =0.1. The parameters used for the SMF28™ is published in [Appendix B]. The
envelope calculated by Eq. 4-9 is superimposed on the fringe pattern in a thick line, which is a close
approximation of the upper envelope.

Since the phase of the upper envelope, @envelope (@nd therefore the dispersion
information) is unaffected by the magnitude of the reflections from the facets and the
mirror, the method for determining the dispersion parameter as presented in Eqgs. 4-4 to 4-
6 is valid even in the general case. The dispersion parameter, therefore, can always be
obtained from an SALI.

As mentioned earlier, the main difference between the fringes produced in this
setup and those produced by dual arm interferometers is the presence of a fast carrier (Eq.
4-8) slowly modulated by the desired envelope. The presence of this carrier sets extra

operational constraints that will be discussed in the next section.
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4.3 System Parameters

There are four factors of interest with regard to the dispersion measurement system.
These factors are important since they will determine the quality and range of the output
of the dispersion measurements. The first factor of interest is the wavelength resolution of
the measurement, the second is the minimum required bandwidth of the source, the third
is the measurable bandwidth of the dispersion curve and the fourth is the test fiber length.
The sections that follow discuss how each of these factors affect the output of the

dispersion measurement.

4.3.1 Wavelength Resolution of the Dispersion Measurement

The wavelength resolution of the points in the plot of the dispersion parameter is
determined by the minimum step size of the translation stage. With smaller step
increments in the translation stage there are smaller step increments in the plot of the
dispersion parameter vs. wavelength. This is because variation of the air path changes the
wavelength where the air path and test fiber are balanced and produces a new
interferogram from which the dispersion parameter can be determined. Examination of
Eq. 4-4 shows that the first term can be removed if the group delay in the air path is equal
to that in the fiber path for the central wavelength, A, (central wavelength at which the
group delay in fiber and air paths are balanced). The relationship between the air path

length and the fiber length at the wavelength A, is given by Eq. 4-10:

dneff
di

I-air = (neﬁ (ﬁ“o )_ ﬂ’o

L, Eq. 4-10
j'O
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Taking the derivative of Ly with respect to A, and using the definition given by

Eq. 4-6, we obtain:

L, =cD(4, )L, Eq. 4-11

Therefore the change of A, with respect to the change of L, can be written as

di, 1
dL,, cL,D

Eq. 4-12

air

Thus, the relationship between a change in the central (balanced) wavelength and
the change in the air path length is given by:

d4, =dL,, 1 Eq. 4-13
cL,D

f

The minimum amount by which we can change the air path sets the minimum
increment of the central wavelength in the interferogram. This amount must be several
times smaller than the bandwidth of the source. Thus the minimum step size of the air
path sets the wavelength resolution of the measured dispersion curve. Note the
wavelength resolution is also inversely proportional to the dispersion-length product of
the test fiber.

I will now show the dependence of the wavelength resolution on the dispersion
length product. As a numerical example, for a step size of 0.1um, assuming a 50-cm-long
SMF28™ test fiber, the wavelength resolution is 0.1nm, which is sufficient for most
applications. As a graphical example the wavelength resolution is plotted against the

dispersion-length product of standard SMF28™ fiber.
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Fig. 4-10: Dependence of the wavelength resolution on the dispersion-length product. Note we assume
the values A, = 1550nm and 8L, = Spm and Bggyree = 130nm.

4.3.2 Minimum Required Source Bandwidth

A minimum number of envelope fringes are required for accurate measurements of
dispersion. As long as the balanced wavelength, o, and four other wavelengths
corresponding to the peaks (or troughs) of the envelope fringes are captured within the
source bandwidth, Bsource, (Fig. 4-11), it is sufficient to determine dispersion D(Ao). It is
found in practice that more accurate measurements require selecting two peaks (or

troughs) on either side of A, as indicated by Bni, on Fig. 4-11.
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Fig. 4-11: Minimum required source bandwidth and the locations of the troughs

For a given test fiber, the dispersion-length product is fixed. Therefore, the only
factor that limits the number of envelope fringes is the source bandwidth, Bsoyrce. The
longer the fiber, or the larger the dispersion, the more closely spaced the envelope
fringes, and hence the smaller the required bandwidth. In order to determine Bpin
quantitatively, we need to determine the maximum value for the wavelength spacing

(A—Ao), as shown in Fig. 4-11. From Eq. 4-4, ignoring the 3™-order term, we can obtain

the envelope phase difference |envetope(A1) — Penvelope (Ao)|, Which has an upper bound of

7, since the first trough occurs at A;:

_ oy =) A7y
¢envelope(ﬁ’l)_ ¢envelope(ﬂ1)1 - 272- 2'21 dﬂz LO Lf =z Eq- 4-14
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Applying the definition of dispersion in Eq. 4-6, we can therefore find the upper
bound of the wavelength spacing (A;—A):

Ao

ﬂl—ﬂos\/ﬁ

Next, we examine the wavelength spacing between A, and A,. From 4-5, ignoring

Eq. 4-15

the 3"-order term and applying Eq. 4-6 gives,

/12

(/12 _ﬂo) _(Al_/lo) ~ cDL,

Eq. 4-16

Combining Egs. 4-15 and 4-16, we get the upper bound for the wavelength spacing

Ao—Ao:

2 .2
(=) =l =2)+ (a2 )F = 5

Eq. 4-17

The minimum required source bandwidth Bpi, should be not less than the upper bound of

2(h—)y), therefore,

B. =22 % Eq. 4-18

min CDLf

It is clear that the dispersion-length product of the test fiber also affects the

minimum required bandwidth. Using a similar numerical example, assuming a 50-cm-
long SMF test fiber and 1.55um as the balanced wavelength, the minimum required
bandwidth is 85 nm. As a graphical example the minimum bandwidth required is plotted
against the dispersion-length product for a standard single mode fiber and the values
assumed for the calculation are Note we assume the values Ao = 1550nm and dLair =

Sum and Bsource = 130nm.
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Fig. 4-12: Minimum bandwidth required as a function of the dispersion length product. Note we
assume the values A, = 1550nm and 8L, = Spum and Bgyye = 130nm.

4.3.3 Measurable bandwidth of the dispersion curve Bea

Since each spectral interferogram produces one dispersion value at the balanced
wavelength, L, to obtain dispersion versus wavelength, a number of interferograms are
recorded at various balanced wavelengths by setting the appropriate air path lengths.
Since each interferogram should be taken over a bandwidth of at least By;n, from Fig. 4-
11 one can see that the measurable bandwidth of the dispersion curve is the difference
between the available source bandwidth Bsoyce and the minimum required bandwidth

Bmin, that IS,

B, =B B, = By — 242 % Eq. 4-19
JeDL,

mea source
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Alternatively, if we do not require two of the troughs to be on each side of A,
then the measurable bandwidth B, can be larger. In order to accurately determine A,
the central fringe (from A_; to A4 in Fig. 4-11) is required to be entirely visible within the
measured spectral range. Therefore,

A
B..=B -2(4,-4,)=B -2—=
mea source (/11 0 ) source \/E

Eq. 4-20

Equation 4-19 or 4-20 gives the lower bound for the measurable bandwidth,
which assumes the widest possible central fringe. In practice, since denvelope (o) Cannot be
controlled, the width of the central fringe can be anywhere between zero and twice the
limit of Eq. 4-20. Therefore, Bnea Can be as large as Bsource IN Certain cases.

Examination of Eq. 4-19 or 4-20 shows that increasing the dispersion-length
product of the test fiber increases Bmea. NOte that for a given measurement system, Bsource
is fixed, so the only parameter that can be used to extend Byea IS Ls. The dispersion length
product is, in fact, the main independent variable in determining the system parameters.
As a graphical example the minimum measurable bandwidth is plotted against the

dispersion-length product for a standard single mode fiber.
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Fig. 4-13: The dependence of the measurable bandwidth (B.e.), on the DL product. Note we assume
the values 2, = 1550nm and 8L 4, = Spm and Bgyyece = 130nm.

The dispersion length-product has been shown to be the main independent variable in
determining the measurable bandwidth and the minimum bandwidth. But the range of
this parameter is itself affected by the source used. The bandwidth of the source
determines the minimum fiber length that can be characterized using this technique and
the minimum wavelength step of the source leads to a maximum characterizable fiber
length. The next section discusses how the source bandwidth and minimum wavelength

step size affect the range of fiber lengths that can be measured using the SAI technique.
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4.3.4 Minimum Fiber Length

The bandwidth of the source determines the minimum fiber length that can be
characterized using SAI. A smaller fiber length produces a wider spectral interferogram
as determined by Eq. 4-18. Thus in order for a certain fiber length to be characterizable
using SAI the interferogram produced must fit inside the source bandwidth. Therefore the

requirement is that,

Bmin < Bsource Eq- 4-21
Using Eq. 4-18, we have:
84,°
Lf > (DB—Z Eq 4-22

source

Note that for a longer fiber there will be a greater measurement bandwidth
(according to Eq. 4-19 or 4-20) and a higher wavelength resolution (Eq. 4-13). As a
numerical example, for a source bandwidth of 130nm, the minimum length for a SMF28
fiber is 0.23m. The maximum fiber length is plotted as a function of the source

bandwidth in Fig. 4-14.
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Fig. 4-14: Minimum fiber length vs. source bandwidth. Note A, = 1550 and D = 18 ps/nm-km.

4.3.5 Maximum Fiber Length

The SAI method uses the slow-varying envelope function to obtain dispersion. Though
the “carrier” fringes are not of interest, they still need to be resolved during measurement
otherwise the envelope shape cannot be preserved. The carrier fringe spacing is directly
affected by the length of the fiber under test, Ls. A longer fiber will lead to narrower
carrier fringes.

The minimum step size of the tunable laser, however, sets a limit on the minimum
carrier fringe period that can be detected due to aliasing. Since a longer fiber length has a
higher frequency carrier this minimum detectable fringe period results in a limit on the

maximum fiber length. The carrier fringe period is the wavelength difference that causes
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the fast varying phase to shift by 2r. The Fast phase term in Eq. 4-2 for a balanced air

path, L,;, = N, (4, )L, , can be written as:

air

¢ = (KN Ly kN, (4,)L4) Eq. 4-23
Using a first order approximation of ne and Ng
)=n, ~n Eq. 4-24

Where n is the core index, the phase term is written as

4L,
= Eq. 4-25
2’0
The fringe period, A4, corresponds to a 2z phase shift
4mL
A¢g = —AA=2r Eq. 4-26
ﬂ“o
Hence,
2
AA = & Eq. 4-27
2nL,

In order to detect one fringe accurately, we apply the Nyquist criterion that at
least 2 sample points have to be included in one fringe. This sets the following limit over

the fiber length:

l 2
L, < 2 OA/I Eq. 4-28
n

Where 44 is the minimum wavelength step size of the tunable laser.

If the fiber length limit is exceeded aliasing occurs. The maximum fiber length for

aliasing to be avoided is plotted as a function of step size in Fig. 4-15.
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Fig. 4-15: The maximum measurable fiber length, L; as a function of the step size of the tunable
laser. The detector resolution is 1 picometer, AL0=1550 nm and n = 1.44.

The preceding analysis assumes that it is necessary to avoid aliasing to ensure that
all of the peaks of the interferogram are sampled in order to accurately plot the envelope
of the interferogram. It is this assumption that leads to the upper limit in the fiber length
given in Eq. 4-28. This upper limit however can be exceeded by dividing the
interferogram into small window sections and selecting a single point in each window to
plot the envelope. The theory behind this technique, called wavelength windowing, will

be explained in detail in the next section.
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4.4 The Effect of Wavelength Windowing

The problem with trying to measure a fiber longer than Eq. 4-28 allows is that the period
of the carrier gets shorter with increasing fiber length. According to Nyquist theory the
sampling period, determined by the average step size of the tunable laser, must be at least
2 times smaller than the period of the carrier in order to avoid aliasing. This ensures that
all the sampled peaks of the carrier match the true envelope of the interference pattern.

Aliasing is a phenomenon that prevents every peak of the carrier from being
sampled but it does not mean that some of the peaks in a given wavelength window range
will not be sampled. We can therefore divide the interferogram into small window
sections, as shown in Fig. 4-16, each containing many sampled points. Thus when
aliasing does occur there will be a certain probability that at least one of the sampling
points will land on a peak of the interferogram within each wavelength window
(assuming a slow variation in the envelope within that window). Therefore, the envelope
of the interferogram can be plotted under conditions where aliasing does occur by taking
the maximum in each wavelength window and connecting them together, as shown in

Fig. 4-16.
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Fig. 4-16: Tracing the envelope of the interferogram by wavelength windowing.

Detailed statistical analysis (developed in the next section) shows how the

58

probability that at least one of the peaks will be sampled within a wavelength window is

determined. This technique shows that the upper limit in Eq. 4-28 can be exceeded by

many folds by wavelength windowing.

4.5 Model Development

This technique uses a tunable laser system to sample the peaks of an interferogram. A

real world tunable laser system, however, does not step the wavelength with equal step

sizes but has a certain standard deviation in its step size. In order to produce an accurate

modeling of a real world process this variation in the step size of the tunable laser must

be taken into account by the model. The tunable laser system used in the experiments was
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the Agilent 8164A which has an average step size of 1 pm and a standard deviation of

0.17 pm as determined from the histogram and the Gaussian PDF in Fig. 4-17:
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Fig. 4-17: Measured Probability density function (histogram) and a Gaussian fit for the step size of
the Agilent 8164A tunable laser.

In order for the model to accurately determine the probability of a sampled point
matching at least one peak of the carrier wave within a certain wavelength window,
certain parameters must be determined. The model that will be developed requires
knowledge of the fiber length, the width of wavelength window, the average step size of
the tunable laser, the standard deviation of this step size and the tolerance in detecting the

peak as a percentage of the carrier period.

M3

—

Gaussian Fit
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In this model we will designate the fiber length as L;, the wavelength window
within which we wish to detect a peak as W, the average step size of the tunable laser as
u, the standard deviation of the step size of the tunable laser as ¢ and the tolerance in
detecting the peak as a percentage of the carrier period as €. If we call A, the separation
between the first carrier peak and the maximum sampling probability density of the first
step, as shown in Fig. 4-18, then the wavelength location of the next maximum sampling
probability occurs at A, + p and the following one occurs at A, + 2 and so on. Fig. 4-18

illustrates the probability density functions along with the carrier functions.
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Fig. 4-18: Model showing the probability density functions for the step size and the carrier for
determining the probability of hitting a peak in a given wavelength window. The probability density
functions for the step size and the carrier fringes are shown. Note that even with aliasing the tunable

laser has a chance of hitting the peaks of the carrier at least once for a given wavelength window
since the period of the peaks of the carrier is different than the period of the wavelength steps of the
tunable laser.
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Fig. 4-18 also illustrates the fact that even with aliasing, where all the peaks of the
interferogram are not sampled, there is still a chance that at least one of the peaks of the
interferogram will be sampled for a given wavelength window since the period of the
peaks of the carrier is different than the period of the wavelength steps of the tunable
laser. Thus, for any given window size there will be a number of peaks of the carrier.

If we assume the location of the first carrier peak to be at A4, as shown in Fig. 4-
18, then the probability that this first peak is sampled by the first step of the tunable laser

IS given by:

P.=

)
_[ s di Eq. 4-29

P (A=1,)?
2 _ 0
1 {
e
&
A7

Therefore the probability that the first peak is not sampled by the first step is:

,11% [_(ﬂ*ﬂo)zj
2
et > Jda Eq. 4-30

Here &, shown in Fig. 4-18, is a fraction of the width of the carrier period and this
measure translates into a tolerance in the measurement of the peak amplitude.
If we let N be the number of steps of the tunable laser in a given window size then

the probability of not sampling the first peak with any of the N steps is given by:

s (A=(Ay+np)?
lﬁ[{l‘ - fz - e[ 262“]M R
n=1 V2ro . 2ro
2

If we let M be the number of peaks of the carrier in a given window size then the

probability of not sampling any of the M peaks with any of the N steps is given by:
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Pav = H P
I [_(z—uom)zj
2
27 Jda Eq. 4-32
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- lmﬂﬂ[_l—%[erf (A,)—erf (A_)]}

m=1l n=1

Where An is the location of the m™ peak in the wavelength window and is given

by m A; and A+ and A. are the normalized wavelength parameters given by:

A 22 |- (2 + )
2

A,
B \/Ea

Eqg. 4-33

Since the model assumes a fixed relationship between the first carrier peak and
the maximum of the probability density function this probability should be averaged for
Ao Varying over one carrier wave period. This gives the probability that no carrier peak is
sampled in a given window for a random alignment between the carrier peaks and the

maximum of the probability density function. The result is given as:

(Pa ) = <1Mﬂﬁ[{l—%[erf (A,)—erf (A)]D £q. 430

m=1 n=1

Thus the probability that at least one of the peaks is sampled for a given window size is

determined as:

(P)=1- <1Mﬂﬁ[{1—%[erf (A,)—erf (A_)]D Eq. 4-35

m=1 n=1
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4.6 Simulation Results

The calculated effective index and dispersion of SMF28™

is used in the following
sections to determine the probability that at least one peak is sampled as one of five
parameters is varied. The parameters varied are the window size, the step size, the fiber
length (which determines the peak spacing), and the tolerance (which determines the how
close the sampled peak is to the actual carrier amplitude). The results are shown in the
following five sections. The parameters held constant in these simulations are chosen to
be the same as the experimental conditions that will be implemented in section 5.2 in the

8TM

experiment on SMF28 ™. The Matlab code used to perform these simulations is given in

Appendix A.2.

4.6.1 Probability vs. Window Size

The probability that at least one peak is sampled in a given window size, W, is shown in
Fig 4-19, as a function of the window size. The parameters held constant for this
simulation are the fiber length (Lf = 39.5 cm), the average step size (u =1 pm) and the
tolerance (g = 0.02 x average carrier period). The probability is plotted for 3 different
cases of the standard deviation in Fig. 4-19: ¢ = 0.05pm, which is as close to the 6 = 0
case (i.e. constant step size case) that we can get using the model since ¢ = 0 leads to a
Am+ = 1/0 (undefined) in Eq. 4-33. The other two cases plotted in Fig. 4-19 are 6 =

0.17pm, and 6 = 1pm.
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Fig. 4-19: Probability vs. window size. The parameters held constant for this simulation are the fiber
length (L= 39.5 cm), the average step size (u = 1 pm) and the tolerance (¢ = 0.02 x average carrier
period). The probability is plotted for 3 different cases of the standard deviation: 6 = 0.05pm, ¢ =

0.17pm, and 6 =1 pm

Fig. 4-19 shows that for the given parameters a unity probability can be obtained for a
window size of > 0.29nm. The window size, however, is not the only parameter that
affects the probability that the tunable laser step will sample the peak of the interferogram
in a given window. The next section shows that the average step size of the tunable laser

also affects this probability.
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4.6.2 Probability vs. Average Step Size

The probability that at least one peak is sampled in a given window size, W, is shown in
Fig. 4-20 as a function of the average step size, p, of the tunable laser. The parameters
held constant for this simulation are the fiber length (L; = 39.5cm), the window size (W =
0.25 nm) and the tolerance (¢ = 0.02 x average carrier period). The probability is plotted
for 3 different cases of the standard deviation in Fig. 4-20: ¢ = 0.05pm, which is as close
to the o = 0 case (i.e. constant step size case) that we can get using the model since 6 =0

leads to a A+ = 1/0 (undefined) in Eq. 4-33, 6 = 0.17pm, and 6 = 1pm.
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ﬁ: 0.98| R
i 0=0.17 pm
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Fig. 4-20: Probability vs. Step Size. The parameters held constant for this simulation are the fiber
length (L= 39.5¢m), the window size (W = 0.25 nm) and the tolerance (¢ = 0.02 x average carrier
period). The probability is plotted for 3 different cases of the standard deviation: 6 = 0.05pm, ¢ =
0.17pm and 6 =1 pm
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Fig. 4-20 shows that for the given parameters there is a near unity probability for
an average step size below 0.5 pm and that it decreases as the step size increases. The
average step size of the tunable laser, however, is not the only parameter that affects the
probability that the tunable laser step will sample the peak of the interferogram in a given
window. The next section shows that the length of the test fiber also affects this

probability.

4.6.3 Probability vs. Fiber Length

The probability that at least one peak is sampled in a given window size, W, is shown in
Fig 4-21 as a function of the fiber length, L;. The parameters held constant for this
simulation are the average step size of the tunable laser (1 = 1 pm), the window size (W =
0.25 nm) and the tolerance (¢ = 0.02 x average carrier period). The probability is plotted
for 3 different cases of the standard deviation in Fig. 4-21: ¢ = 0.05pm, which is as close
to the o = 0 case (i.e. constant step size case) that we can get using the model since 6 =0

leads to a Am+ = 1/0 (undefined) in Eq. 4-33, 6 =0.17 pm and 6 = 1 pm.
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Fig. 4-21: Probability that at least one peak is sampled in a given window vs. fiber length. The
parameters held constant for this simulation are the average step size of the tunable laser (n =1 pm),
the window size (W = 0.25 nm) and the tolerance (¢ = 0.02 x average carrier period). The probability

is plotted for 3 different cases of the standard deviation: ¢ = 0.05 pm, 6= 0.17 pm, and 6=1 pm.

Fig. 4-21 shows some peculiar dips where the probability drops to zero for the
cases where the standard deviation is small (¢ = 0.05 pm and ¢ =0.17 pm). We can see
that when the standard deviation is high (c = 1pm) these dips disappear. We also notice
from Fig. 4-21 that for higher standard deviation the probability curves drop more
quickly to the asymptotic value. Thus a lower standard deviation in the step size of the
tunable laser produces curves with higher initial probabilities, but large dips in the
probability curve where the probability drops to zero. A higher standard deviation in the
step size produces curves with lower initial probabilities but eliminates the dips where the
probability drops to zero. It is therefore beneficial to have some amount of variation in

the step size of the tunable laser in order to eliminate these dips in the probability.
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These dips where the probability drops to zero can be explained by the fact that
certain fiber lengths lead to a carrier spacing that is a multiple of the wavelength step size
and as a result none of the peaks in a window get sampled. Fig. 4-22 shows the
probability as a function of fiber length for o = 0.05pm and for two different step sizes p
= 1.3pm (plotted in blue and p = 1pm (plotted in green). Fig. 4-22 shows that the location
of the dips are different for each case since the dips occur at different fiber lengths
(different carrier spacing).

The dips occur whenever the carrier spacing is a certain multiple of the step size
of the tunable laser. This multiple is given in Eq. 4-36.

n
G=—
2" Eq. 4-36

n and m are positive integers. Whenever the carrier period is a multiple of G there is a

high probability that none of the peaks get sampled.
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Fig. 4-22: Probability vs. Fiber length for the 6 = 0.05pm case for a step size of p=1 pm and for the
step size of p = 1.3 pm. The location of the dips in probability occur at different fiber lengths (carrier
periods) for different step sizes. They occur when the carrier period is a certain multiple of the step
size and there is a chance that none of the peaks within the window get sampled. The parameters
held constant for this simulation are the window size (W = 0.25 nm), the tolerance (¢ = 0.02 x average
carrier period) and the standard deviation of the step size ¢ = 0.05 pm.

The average carrier period is determined by taking the average of all the carrier

period in the bandwidth as described by Eq. 4-37:

/12
A, = <2 3 > Eq. 4-37
Metr L1 Bandwidth

This is easily calculated using the Matlab program written in Appendix A.2.5.

As a numerical example Fig. 4-22 shows several dips where the probability drops to zero.
In the case where p = 1.3 pm in Fig. 4-22 when the fiber length is 0.05m the average
carrier period is determined to be 13 pm which is 10 times the step size. Table 4-2 shows

several other numerical examples using the dips in Fig. 4-22.
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Table 4-2: The dips where the probability drops to zero in Fig. 4-22 occur when the carrier period is
a multiple of G = n/2™ the step size.

Fiber length Step Size Carrier Period Multiple
0.04 m 1.3 pm 20.8 pm 0 16 16
0.0916 m 1.3 pm 9.1 pm 0 7 7
0.139m 1pm 6 pm 0 6 6
0.171 1.3 pm 4.878 pm 2 15 3.75
0.3m 1.3 pm 2.6 pm 0 2 2
0.365m 1.3 pm 2.285 pm 2 7 1.75
0.3925 1 2.125 3 17 2.125
0.425m 1.3 pm 1.95 pm 1 3 1.5

Note that a dip occurs whenever the period of step size approaches G times the
carrier period (for the cases with low standard deviation). This is not illustrated in Fig. 4-
22 since it is impossible to get a high enough resolution so that the simulated points fall
exactly on the fiber length where every dip occurs. This is also the reason that the dips in
Fig. 4-22 do not fall completely to zero.

We also notice that for the given parameters that we have held constant in this
simulation the probability of sampling a peak asymptotically approaches a constant value
as the length is increased. We notice that this constant is the same, regardless of the
standard deviation of the step size. The conclusion, therefore, is that this technique can be
used to measure the dispersion of long lengths of fiber (assuming of course that a long
enough air path can be produced by the experimental setup and that the period of the

carrier peaks is still above the laser linewidth).
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4.6.4 Probability vs. Tolerance

The probability that at least one peak is sampled in a given window size is shown in Fig.
4-23 as a function of the tolerance. The parameters held constant for this simulation are
the average step size of the tunable laser (1 = 1 pm), the window size (W = 0.25 nm), and
the fiber length Ls = 39.5 cm. The probability is plotted for 3 different cases of the
standard deviation in Fig. 4-23: o = 0.05pm, which is as close to the o = 0 case (i.e.
constant step size case) that we can get using the model since ¢ = 0 leads to a Ay = 1/0

(undefined) in Eq. 4-33, 6 =0.17 pm and 6 = 1 pm.

0.995
0.99¢
0.985
0.98¢ ¢ =0.17pm .
0.975 = 1pm
0.97¢ -
0.965

ity

o =0.05pm ~ 0

Probabil

14 16 18 2 22 24 26
Tolerance: % of the carrier peak spacing

Fig. 4-23: Probability vs. Tolerance. The parameters held constant for this simulation are the average

step size of the tunable laser (n = 1 pm), the window size (W = 0.25 nm) and the fiber length L¢= 39.5

cm. The probability is plotted for 3 different cases of the standard deviation: 6= 0.05pm, ¢ = 0.17pm
and ¢ = 1pm.
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Fig. 4-23 shows that the probability of hitting a ‘peak’ increases as the definition
of where the peak actually is becomes relaxed. As the tolerance is increased the degree to
which the peaks of the envelope match the amplitude of the actual interference pattern is
reduced. It can be seen from this figure that the minimum probability of hitting a peak is
zero and that it approaches unity if the tolerance is 2.6% for the given parameters that are
held constant.

This chapter has developed the theory of single arm interferometry, discussed
how it is implemented and how it can be explained via rigorous mathematical analysis of
three wave interference. The technical limits of the SAI have been discussed by showing
the effects on the dispersion measurements of four factors of interest. The range of
characterizable fiber lengths can be extended via a wavelength windowing technique in
which the envelope is plotted by selecting a few points in a given bandwidth. The result
of this range extension is that the ultimate limit on the test fiber length is the laser
linewidth (which should be much smaller than the carrier fringe period) and the
maximum air path length. The next chapter will describe the practical application of the

theory that has been developed in this chapter.
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In this chapter the results of experiments using Single Arm Interferometry are presented
to substantiate the theory of single arm interferometry, introduced in the last chapter. An
outline of the steps in the experimental process is first provided to give an overview of
the experimental process. Then the challenges encountered during the setup of the Single
arm interferometry experiments are described. Following these challenges is a description
of the instruments used in the experiments and their specific limitations. The last three
sections of this chapter outline the results of the experiments performed to characterize
three different types of fiber: Single mode fiber (SMF28™), Dispersion Compensating

Fiber (DCF) and Twin Hole Fiber (THF).

5.1 Experimental Process

The experiments in this chapter were carried out to validate the theory presented in the
previous chapter and to characterize the dispersion of a Twin Hole fiber for which the
dispersion has never been published. The first step in the experiment is to set up the
Single Arm Interferometer and to assemble the control and data acquisition hardware.
The second step in the experiment is to test the technique by using it to measure the
dispersion of fibers for which the dispersion curves are known or that can easily be
measured using conventional techniques. To do this, the dispersion curves of Single
Mode Fiber (SMF28™) and Dispersion Compensating Fiber (DCF) were measured.
After careful analysis of the results for the experiments on SMF28™ and DCF the new

technique was then used to measure the dispersion of a fiber that has never before been
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characterized. The entire experimental process for this project is outlined in Fig. 5-1
below.

Set up of the Test the technique by Analyze the results

Apparatus, Control
and Data Acquisition

measuring fiber with
known dispersion
parameter curves

A 4

- SMF28™
-DCF

Characterize fiber with
unknown dispersion
parameter curves

- Twin-Hole Fiber

v

using developed
computer programs
(Matlab)

Fig. 5-1: Experimental process for the development and testing of the Single Arm Interferometer.
The first step is to set up the apparatus as well as the control and data acquisition hardware and

software. The second and third steps test the technique and the fourth step uses the verified

technique to characterize a fiber with unknown dispersion.

5.2 Experimental Challenges

In order to compare Single Arm Interferometry to other dispersion measurement

techniques the challenges of setting up such an interferometer must also be well

understood. There were several challenges associated with the setup of the system and the

implementation of the experiments.

One challenge in the setup included alignment of the APC connector with the test

fiber which was especially difficult for Twin-hole fiber since the fiber was different in

size to SMF so core to core alignment was not easy. Using a bare fiber adapter and a fiber
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to fiber connector helped but coupling was still a difficult task since the core of THF is
slightly off centre (see Fig. 5-6) whereas the core of SMF28™ is at the centre of the
fiber. Another challenge is to prevent the angle polished connector (APC) from being
broken by being pushed too forcefully against the flat polished connector (FPC). One
way to eliminate the possibility of this occurrence is to produce the APC with a locking
pin to prevent a standard FPC from breaking it.

Another challenge in the setup was placing the test fiber at the right location in
the bare fiber adapter so that light could be properly collimated by the collimating lens.
Trial and error using an infrared card and a pinhole to collimate the beam helped in this
regard.

Another challenge was alignment of the mirror such that the beam could be
reflected back exactly into the collimating lens and thus back to the detector with a
magnitude on the same order as the reflections from the facets of the test fiber. Trial and
error was used to achieve maximum fringe visibility.

Air flow in the air path is an effect that leads to changes in the density and
therefore the optical path length in the air path. To solve this problem the system was
encased in a container to reduce air flow in the air path.

Because of its simplicity the challenges presented in the set up of a single arm
interferometry experiment are rather straightforward and it is for this reason that it will be
very competitive as a dispersion measurement technique. This simplicity coupled with
the advantage of high precision make the SAI a powerful method for characterizing the
dispersion of short length fibers. The next section outlines the instruments and tools used

in the setup of an SAI and their specific limitations.
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5.3 Experimental Instrumentation & Specific Limits

Circulator Collimating Mirror
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Fig. 5-2: Experimental Setup of a Single Arm Interferometer for dispersion characterization. The
tunable laser source and detector used are the Agilent 8164A Lightwave Measurement System with a
bandwidth of 130 nm centered around 1550 nm, and a minimum average wavelength step of 1 pm
(standard deviation 0.17 pm). An angle-polished connector is used at the launch fiber to eliminate the
reflection from this facet. The reflections from the collimation lens surfaces are suppressed by using
an antireflection coated lens. The mirror tilt is adjusted to obtain maximum fringe visibility. The
mirror translation is controlled manually, and the minimum step is approximately 5pum.

The experimental set up is shown in Fig. 5-2. The tunable laser source and detector used
are plug-in modules of the Agilent 8164A Lightwave Measurement System. The source
has a bandwidth of 130 nm centered around 1550 nm, and a minimum average
wavelength step of 1 pm (standard deviation ¢ = 0.17 pm). The unit records the detector
readings and the wavelength readings as the source wavelength is swept. The spectral
interference pattern is then analyzed. The fibers are aligned by a standard connector or
using a bare fiber adapter in cases where the fiber is not connectorized. An angle-
polished connector (APC) is used at the launch fiber as shown in Fig. 5-2 in order to
eliminate the reflection from this facet. A locking mechanism can be used to prevent the

APC from being broken by the FPC. The reflections from the collimation lens surfaces
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are suppressed by using an antireflection coated lens. The dispersion of the lens is
negligible. The mirror tilt is adjusted to obtain maximum fringe visibility. The mirror
translation is controlled manually, and the minimum step is approximately 5um.

In the following sections, we will apply the SAI technique to measure the

dispersion of three different fibers: a standard SMF28™

single mode fiber, a Dispersion
Compensating Fiber (DCF) and a Twin-Hole Fiber (THF). In measuring the envelope of
the spectral interferogram, the total scanning region is divided into 0.25-nm-wide
wavelength windows, over which the envelope is considered constant. The peak value

within each band is extracted to produce the spectral envelope as described in sections

451-453.

5.4 Experiments

5.4.1 Single Mode Fiber

The dispersion properties of SMF28™ are well known and hence it was used to
verify the theory of single arm interferometry. In this experiment we used a 39.5+0.1 cm
piece of the SMF28™ fiber in a SAI in order to characterize its dispersion. Fig. 5-3
shows a plot of both the experimental dispersion parameter points and the simulated
dispersion of SMF28™. From this figure we can see that the slope of the measured
dispersion points closely match the simulated dispersion curve. The simulated dispersion

curve for SMF28™ was calculated using the dispersion equation given in Appendix B:

S A1
D(A)=—"|A-— Eg. 5-1
(1) 4{ /13} q

Where Ap = 1313 nm and S, = 0.086 ps/nm-km and D(2) is measured in ps/nm-km.
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Fig. 5-3: Measured dispersion compared to published dispersion equation [Appendix B] for a
39.5+0.1cm SMF28™ fiber. The standard deviation of the measured dispersion is determined using a
linear fit and calculating the standard deviation of the difference between the measured values and
the linear fit. The simulation is calculated using the Matlab code in Appendix A.3.1 to be is 0.28
ps/nm-km (corresponding to a relative error of 1.6%). When this standard deviation is multiplied by
the length of the fiber, this translates into a standard deviation of 0.0001 ps/nm.

The wavelength resolution of the measured dispersion curve, as determined by
Eq. 4-13, is 2.4 nm. The measurable bandwidth according to Eq. 4-20 is 30nm, which is
the bandwidth actually used, as shown in Fig. 5-3. The standard deviation of the
measured dispersion is calculated by taking the difference between the measured points
and a linear fit and then calculating the standard deviation from the difference. The
standard deviation, as calculated using the Matlab code in Appendix A.3.1, is 0.28 ps/nm-
km (this corresponds to a relative error of 1.6%). When this standard deviation is
multiplied by the length of the fiber, this translates into a standard deviation of 0.0001
ps/nm. A comparison between the measured and simulated interference patterns for

SMF28™ is shown in Figs. 5-4 (a) and (b).
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Fig. 5-4: (a) Measured upper envelope (experimental) fringe pattern. (b) Simulated interference
pattern and upper envelope. The experimental and simulated conditions are: fiber length L; = 0.395m
effective group index at central wavelength = 1.472469, L, = 1.472469L .
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The simulated interference pattern is generated using Eg. 4-8 and the envelope of
the interference pattern is generated using Eq. 4-9. The Matlab code used in the
simulation is given in Appendix A.1. In the simulation a fiber length of 0.395 m is
assumed in order to match the experimental conditions. The path length of the air path is
determined via a calculation of the effective group index of the fiber was determined to

be 1.472469 at the central wavelength, A, via Eq. 5-2:

()2, (K(2)a) _ (r(D)K, ;1 (x(2)a)
3, (x(2)) K, (x(2))

Eq. 5-2

Where

K(ﬂ’) = \/ncore (2’)2 — Negt (/1)2

Eq. 5-3
7/(2’) = \/neff (/1)2 - ncladding(ﬂ’)2

Note that a is the core size of the fiber and J and K are Bessel functions of the first and
second kind. The locations of equality in Eq. 5-2 determine the values of k() and y()) as
well as a mode of the fiber. The first of these modes is called the fundamental mode of
the fiber. The values of Ncore(A) and nejadging(A) are the index of bulk glass with the
composition of the core and cladding respectively. The effective group index as a
function of wavelength in SMF28™ fiber is determined using the simulation in Appendix
Alz2

In Fig 5-4 there are differences between the upper envelope of the experimental
fringe pattern and the upper envelope of the simulated fringe pattern. These differences
are in the contrast and amplitude of the experimental fringe pattern. The larger contrast in
the experimental data is due to the fact that in the experiment the magnitude of the

reflections from the facets of the fiber and the mirror were not equal. The aim of the
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experiment was to simply maximize the fringe visibility so that the locations of the
peaks/troughs of the envelope could be determined so that the dispersion could be
calculated. The simulation has a different contrast since it assumes equal reflections from
the fiber facets and the mirror. The analysis that shows how the differences in the
reflections from the facets and the mirrors lead to variation in the fringe contrast was
presented in chapter 4.3.1.2. The variable amplitude in the experimental fringe pattern is
due to the fact that there is a background amplitude spectrum that has not been removed

from the measurement.

5.4.2 Dispersion Compensating Fiber

As a second method of verification, we measured dispersion on a short piece of DCF,
whose dispersion value is approximately one order of magnitude higher than that of
SMF28™  and has an opposite sign. We used a 15.5+0.1 cm piece of DCF fiber, and the
measurement results are given in Fig. 5-5. To verify the accuracy of our measurement,
we also measured dispersion on an identical 100+0.5m DCF using a commercial
dispersion measurement system (Agilent 83427A), which employs the MPS technique.
Again, our measured dispersion values are in good agreement with those measured by the
commercial device, though the fiber length we used is almost 3-orders of magnitude
smaller.

The standard deviation of the measured dispersion is calculated by taking the
difference between the measured points and a linear fit and then determining the standard
deviation of the difference. The standard deviation of the measured data (as calculated

using the Matlab code in Appendix A.3.2 ) is 0.99 ps/nm-km, which corresponds to a
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relative error of 0.9%. When multiplied by the length of the fiber, this translates into a

standard deviation of 0.00015 ps/nm.
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Fig. 5-5: Measured dispersion parameter plot for DCF using the Agilent 83427A and Single Arm
interferometry. The standard deviation of the measured data (as calculated using the Matlab code in
Appendix A.3.2 - with reference to a linear fit) using the SAl is 0.99 ps/nm-km, which corresponds to

a relative error of 0.9%. When multiplied by the length of the fiber, this translates into a standard
deviation of 0.00015 ps/nm.

Since DCF has negative dispersion values a procedure for determining the sign of
the dispersion was developed. By examination of Eq. 4-13 repeated below for
convenience

d4, =dL,, 1 Eq. 5-4
cL,D

We can see that if the sign of the dispersion is negative then the location of the

central wavelength will decrease as the path length of the air path is increased. This is a

quick method for determining the sign of the dispersion.
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5.4.3 Twin Hole Fiber

Twin Hole Fiber (THF) has been used in fiber poling to facilitate parametric generation
in fibers [48, 52] or making fiber-based electro-optic switching devices [53]. In such
nonlinear applications, dispersion of the fiber is an important parameter to be determined.
The dispersion properties of THF, however, have never been reported. This is partly due
to the lack of uniformity in the diameter of the THF along its length. The fiber has a 3-
um-diameter core and a numerical aperture that is higher than that of SMF28TM. The

cross section of a typical THF is shown in Fig. 5-6:

3um

gum

125um  5Qu @ Q

10um

Fig. 5-6: Cross section of a typical Twin-Hole Fiber

The core is Ge-doped silica, and has an index similar to that of SMF28™.
Therefore, we expect the dispersion of THF to be slightly lower than that of SMF28™.
Since we did not know the magnitude of the dispersion for THF we decided to choose the

largest length of THF available to increase the chance that the minimum bandwidth
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required for a measurement would fit in the available bandwidth of the tunable laser
source. The largest length of THF available was 45+0.1 cm. This length of fiber is
slightly longer than the length allowed by Eq. 4-28 but since we used the technique of
wavelength windowing described in sections 4.5.1-4.5.3 the measurement of the envelope
was still possible in this experiment.

The measurement results from the experiment on THF are given in Fig. 5-7. The
standard deviation of the measured dispersion is calculated by taking the difference
between the measured points and a linear fit and then calculating the standard deviation
from the difference. The standard deviation of the measured data, as calculated using the
Matlab code in Appendix A.3.3, is 0.375 ps/nm-km (which corresponds to a relative error
of 2.9%). When multiplied by the fiber length, this standard deviation translates into a
precision of 0.00017 ps/nm. The slightly larger standard deviation compared to those for
the SMF and DCF measurement is due to the higher loss in fiber coupling between the
SMF and the THF, and hence the lower and more noisy signal level during the THF

measurement.



Chapter 5: Experiments & Analysis 85

16 -
=  Measured THF
- = Linear fit of THF
‘S 15-
=~
-
£ 14 .
%) " i
o _ -
N . .I - -
c 13_ - _ - .— | ]
8 - s " s By
D 12-
N
O
11

I ' I ' I ' I ' I
1540 1560 1580 1600 1620
A (nm)
Fig. 5-7: Measured dispersion for the 45+0.1cm Twin-Hole Fiber performed using Single Arm
Interferometry. The standard deviation of the measured data (as calculated using the Matlab code in
Appendix A.3.3 - with reference to the linear fit) is 0.375 ps/nm-km, which corresponds to a relative

error of 2.9%. Multiplied by the fiber length, this translates into a standard deviation of 0.00017
ps/nm.

An important aspect of the previous three sections is the error associated with the
measurement of each point in the dispersion parameter plots. The next section outlines
the source and magnitude of the error associated with the measurement of the dispersion

parameter.
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5.5 Error Analysis

It is important to understand the source and magnitude of the error in the measurement of
the dispersion parameter in the previous experiments to gain an understanding of the
precision and accuracy that can be attained with an SAI. There are several sources of
error in the measurement of the dispersion parameter.

Errors introduced by the environment in which the experiment takes place are the
first types of errors in the experiment. These errors are not quantifiable so they were
mitigated by encasing the system in a sealed container in which the temperature and
density of the air was stabilized. Encasing the system in a sealed container mitigates the
error that causes a variation in the optical path length of the air path due to air currents
and the error that causes a variation in the length of the fiber due to temperature
fluctuations in the air.

There are three other quantifiable sources of error in the experiment. Instrument
error in accurately measuring the wavelength of the tunable laser is the first, human error
in measuring the lengths of the fiber used in the experiment is the second, and systematic
error due to the wavelength windowing process (which puts an uncertainty with a
magnitude of + one half the window size on the points in the envelope) is the third.
Instrument error in the measurement of the wavelength is much smaller than the
wavelength window used to plot the envelope and as a result, it can be ignored in
comparison to the systematic error.

Thus the major quantifiable contributions to the error in measuring the dispersion

parameter are human error and systematic error. How these two quantities combine to
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produce an overall error in the measurement of the dispersion parameter is now
discussed.

The dispersion parameter is measured (at the central wavelength, Ag) using
equation Eq. 2-5:

A 07N
c dA’

[N —
B

There are two sources of error in this calculation; the error in the measurement of

D(4,) =- Eq. 55

the location of the central wavelength, Ao, due to systematic error caused by the use of
wavelength windowing to plot the envelope and the error in the measurement of the
second derivative of the effective index with respect to wavelength. For simplicity this
quantity is henceforth referred to as B.

When two measurements are made independently the errors are added in

quadrature. For example, given the function z = f(x, y) the error in z can be calculated:

dfty, o, (df) . o,
Az :\/(&j (AX) +(d_yj (Ay) Eqg. 5-6

B and 4, are not independent since B depends on Ao, however, for simplicity we

assume that the two are independent and later we will show that the error in g is much
smaller than the error in B and thus the error in measuring the dispersion parameter, D,
really only depends on the error in measuring B. At this point, however, we proceed with
the analysis assuming that the measurement of Ao and B are independent. Under this
assumption the error in the dispersion parameter can be found via the addition of the

errors in quadrature:
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AD- J(STDJ (M) + (j—gj (AB)” = J(gj (Ady)" + [%] (aB)’ £q.57

Where 4/, is the error associated with measuring the central wavelength, which is

+ half the wavelength window and 4B is the error in calculating the second derivative of
the effective index with respect to wavelength. Since B is calculated using the phase
information in the envelope of the interference pattern via Eq. 4-5 we use this equation in
order to determine 4B. In order to simplify the calculation of 4B, we ignore the third

order dispersion term so that Eq. 4-5 becomes:

_ 2 _ 2 dzn dZn
A(é:m:ZL{(% }L/%O) _(Al /10) —I Zﬁ =2Lf[/12_ﬂ1+/102]“271_/1021171 :ﬁ
2 4 J d Lo Ao a o) d %o
B
Eqg. 5-8
So that:
B=mL, "A(4,, 4, 4,)" Eq. 5-9

Thus if we assume that all variables in the experiment are independent then their errors

can be added in quadrature:

.Y, o ()Y o, (m ), m),.
o o - { o o

4B is the total error in measuring the second derivative of the effective index with

respect to wavelength, B, and it is due to both 4A and the human error in measuring the
length of the test fiber, L.
AA is the error in calculating the B due to the error in locating the peaks of the

envelope as shown in Fig. 5-8. The magnitude of this error is again + half the width of
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the wavelength window used to plot the envelope, i.e. it is the systematic error. 4A is

calculated by adding the error in measuring the location of the troughs in quadrature:

dA , (dAY . ., [(dAY ,
AA:zJ(az:]‘A*” *(az;J<Ai” *(az:J‘Aﬂ”

Lo (Y ) BY)
W&ZWW{&JWW{Wﬂ%W

In order to reduce the systematic error it is best to choose the wavelength

Eq.5-11

locations 4., A1 and 4, to be the troughs of the envelope since their locations are more
sharply defined. Therefore this is the reason why the troughs of the envelope locations
were used in the experiments instead of the peaks. The systematic error is illustrated in

Fig 5-8.

A =154 Ao = 1580nm

2= 15531m

06

04

>
AX=0.125n _

0.2t AM = f125n
4.

Alo = 0.125nm

. )
1 1550 1600 1650

Fig. 5-8: Error in calculating B due to the error in locating the peaks of the interferogram
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A numerical example of the error associated with the measurement of the
dispersion parameters in the plots of the previous three sections is now presented for one
of the SMF28™ measurements. The single mode fiber was measured to be 0.395+0.001
m. Thus the human error in the measurement of the fiber length is estimated to be ALs =
+0.001 m. One of the interferograms from the measurement is shown in Fig. 5-8. The
wavelength window size used in the experiments was 0.25nm therefore 44 1,=0.125nm.
From Fig. 5-8 we can see that Ao = 1580nm, A; = 1540nm and A, = 1553nm. Thus from
Eq. 5-11, 4A = 0.0082nm. Substitution of 4A= 0.0082nm and AL; = +0.001 m into Eq. 5-

10 (assuming m = 1 separation is used as in Fig 5-8) yields,

AB =+/3.913x10"° +1.268x10** = 6.356x10" /m which shows that the error in locating
the peaks of the envelope has a larger effect than the human error in measuring the length

of the fiber. Substitution of this value into Eq. 5-7 yields:

AD =+/1.917x10 %8 +1.12x10® = 0.334 ps/ nm — km. Which shows that the error in

measuring B, has a larger effect than the error in determining the central wavelength.
Thus 4D is mainly determined by the error in measuring B regardless of whether or not
Ao and B are independent. This value for 4D is consistent with the observed spread in the

dispersion pattern in Fig. 5-3.

In conclusion, the experimental results of Single Arm Interferometry confirm the
theory developed in chapter 4. They show that the dispersion parameter can be calculated

from the envelope of the fringe pattern produced by the interference of 3 waves in a

8TM

balanced SAI. The experiments on Single mode fiber (SMF28 ™) and Dispersion
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Compensating Fiber (DCF) were used to confirm the theory behind the technique and
once the technique was confirmed it was used to measure the unknown dispersion
parameter plot for THF. The length of Twin hole fiber used in the experiment was larger
than allowed by Eq. 4-28 so the technique of wavelength windowing, described in
sections 4.5.1 - 4.5.3, had to be used. This technique was shown theoretically and via
simulation to extend the maximum length of fiber that can be characterized by this
technique. Ultimately the largest length of fiber that can be characterized is limited by the

largest air path that can be produced in the experiment and the laser linewidth.
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6.1 Expected Significance to Academia

The single arm interferometer is introduced as an alternative to the Michelson or the
Mach Zehnder configuration for interferometric measurements of the dispersion
parameter. It will be most useful for measurements of the dispersion parameter in short
lengths of fiber. The technology will be used to eliminate the need for the arm balancing
required by dual arm interferometers and by doing so allow for greater ease in the
commercialization of Interferometric dispersion measurement technigues.

The new interferometer is significant for Academia since it can be studied and
used alongside the earlier types of interferometers like the Michelson, the Mach-Zehnder
and the Fabry Perot. This new interferometer provides academia with another tool for
studying dispersion in short length fibers and waveguides which will be useful in the
development of specialty fibers. These specialty fibers require simple and accurate short
length characterization since they are generally made in very small quantities and their
geometry tends to vary as a function of position along the fiber.

Another significant academic achievement of the Single Arm Interferometer is
that a paper has been written for this technique and it will be submitted shortly for review
to the Journal ‘Optics Express’. If it is accepted for publication the new technique will be
accessible to anyone interested in measuring dispersion on short length fibers. This
technique increases the ease of dispersion characterization and as a result it will lead to a
greater number of dispersion measurements being performed, especially in the area of

specialty fiber.

92
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6.2 Expected Significance to Industry

The new interferometer is significant to Industry since it eliminates the need to
compensate for unwanted reflections by eliminating the need for a coupler altogether. As
a result this interferometer is a simpler (less expensive) interferometric dispersion
measurement device capable of characterizing the dispersion of short length optical fiber.
As aresult it is a viable commercial competitor to the current Modulation Phase Shift
(MPS) based devices currently on the market. The new interferometer, however, has an
advantage over MPS based devices since it has the ability to measure short length fiber
with high accuracy.

Also, since it can measure short lengths of fiber it has the ability for another type
of measurement as well. Dispersion is a function of both material and dimensional
(waveguide) properties of a fiber but if the dimensions, particularly the diameter of the
fiber, vary then the dispersion will vary. If several small sections can be cut from various
points on a long length fiber and the dispersion is measured in each of them then the
variation in the dispersion can be plotted as a function of position in the fiber. This can
then be directly related to the variation in the fiber diameter. The main point here is that a
great deal of accuracy in measuring the fiber diameter can be achieved by measuring it
indirectly via the dispersion and it would be an easy way for a fiber drawing company to
perform quality control.

Greater commercial interest in this device will enable measurement of dispersion
in smaller lengths of fiber since larger bandwidth tunable lasers will be developed. Also
the advancement in the speed of the tunable laser and scanning process will make each

measurement faster to obtain.
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6.3 Patent Application

One of the most interesting features of a single arm interferometer is the ease with
which it can be built. This ease of construction lends itself very nicely to economical
commercial assembly of a dispersion measurement device. An idea which is currently
under patent is to produce a cheap add-on module for a tunable laser system to allow it to
make dispersion measurements. A conceptual design of such a module is illustrated in

Fig. 5-9:

To detector

Input Circulator
=~ <>

.

Test fiber
4:0 —

Collimating Mirror
lens

Fig. 5-9: Conceptual design for a dispersion measurement module for a tunable laser system. The
connector labeled ‘To detector’ is the input to a power detector, the connector labeled input is
connected to the output of a tunable laser. The test fiber can then be connected as shown in the

diagram in order to perform the dispersion measurement.

* [U of T Invention Disclosures: RIS ID #10001509 & RIS ID #10001591 Patent
applications now underway]

This dispersion measurement module could be produced to work with, for
example, the Agilent 8164A or 8164B Lightwave measurement system mainframe

depicted in Fig. 5-10:
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Fig. 5-10: Agilent 8164A/B Lightwave measurement system mainframe.

The Agilent 8164A or 8164B Lightwave measurement mainframe is a mainframe
which controls modules such as tunable lasers and measurement devices that are inserted
into the slots on the mainframe. The cost of the mainframe and a tunable laser module is
$20,000. A dispersion characterization system sold by Agilent, namely the Agilent
86038A/B Photonic Dispersion and Loss Analyzer depicted below in Fig. 5-11 costs

$130,000.

Fig. 5-11: Agilent 86038 A/B Photonic Dispersion and Loss Analyzer
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Since this system includes the mainframe and tunable laser their value must be
subtracted. This leaves about $110,000 for the dispersion and loss characterization
devices in the system. Since an SAI has a higher precision, can characterize both short
and long length fiber and it is less expensive to implement it is very easy to see that this
technology is disruptive to the industry. As a result the commercial potential of this

characterization technology is quite extraordinary.

6.4 Conclusions

In this paper we presented a novel fiber-based SAI to measure directly the dispersion
coefficient in short lengths of fiber (< 50 cm) with a standard deviation (precision) as low
as 0.0001 ps/nm. The technique utilizes the spectral interferogram created by three
reflections and extracts the second-order dispersion from the envelope of the
interferogram. The technique is shown to be a simpler alternative to the Michelson or
Mach Zehnder interferometers. By eliminating one of the interferometer arms, the
technique does not require calibration and are less susceptible to polarization and phase
fluctuations. The constraints on the operating parameters of this technique, such as
wavelength resolution, fiber length, and measurable bandwidth, were discussed in detail.

We verified the technique experimentally by performing a dispersion

8TM 8TM

measurement on SMF2 and DCF. Our measured dispersion results on SMF2
showed good agreement with the simulated dispersion values based on published fiber
geometry and material properties. Our measurement results on DCF agreed well with the
measurement performed on a much longer DCF using a commercial dispersion

8TM

measurement system. In addition to SMF2 and DCEF, single arm interferometry was

used to measure the dispersion parameter of a twin-hole fiber for the first time.
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The operating parameters of this technique were discussed in detail and it was
shown that the range of measurable fiber lengths can be extended using wavelength
windowing and a tunable laser with a random step size. This method can also be used to

measure the dispersion of any waveguide in general and is not limited to optical fiber.



Appendix A: Matlab Code

A.l: Generating the Interference Pattern and the Envelope

[

% Envelope and Interference pattern program

clear all
close all
clc

% Parameters

step size = 1*10"-12;%
Lf = 0.395;

Lair = 1.472469*Lf;

=

pm step size
Length of fiber in meters
1.47235 is the group index

o©

o©°

Uo=1; % First Fresnel reflection

gamma=1; % Fraction of first Fresnel reflection
% reflected from first facet

alpha=1; % Fraction of the first Fresnel

o

reflection reflected from the mirror
% Interference pattern

load neff2.mat % neff for single mode fiber

neff fit = polyfit(lambdal, neff, 3); % Interpolated

lambda = 1510*10"-9:step size:1640*10"-9; % Interpolated

neff sim = polyval (neff fit, lambda):; % Interpolated

beta = (2*pi./lambda) .* neff sim; Beta values interpolated
ko=2*pi./lambda;

o

% Entire interference pattern

I=abs (l+alpha*exp (i*beta*2*Lf) +gamma*exp (i* (beta*2*Lf+ko*2*Lair))) ."2;
% Envelope of the interference pattern

envelope full = Uo”2* (1 + alpha”2 + gamma”2 + 4*alpha*abs(cos (beta*Lf -
ko*Lair)) + 2*alpha*(gamma-1) + 2*gamma) ;

figure

plot (lambda, I, lambda,envelope full, 'x'");

xlabel ('lambda (nm) ')

ylabel ('Intensity (a.u.)"')

A.2 Calculating Neff

clc;
clear;
warning off;

global Ks Ko r0 rj n j tJ m beta w 1 eps0O mu0 ns no lambda0 V Uj Wj Rs
Rl p a

o)

% Fiber parameters
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for lambda i=0:100

lambda i
lambda0O=1.5e-6+.le-6*lambda 1/100
lambdal (lambda i+1l)=lambdal;
ko=2*pi/lambdal

Q

s SMF parameters

m=1;
SNA=.122;
NA=0.112

Delta n=0.0036;
nl=silica index2 (lambdaO*le6,1); % Taken from data file
n2=silica_ index2 (lambdaO*le6,0); % Taken from data file
Dn=nl-n2;
% Source fiber
Rs=2.3e-6;
V=ko*Rs*sqgrt (n1l"2-n2"2);
ws=Rs* (0.65+1.619*V"-1.5+2.879*V"-06) ;
no=nl;
ns=n2;
Uo=fzero (ELP,V-.4); $ Function LP defined below
Xo=Uo/Rs;
Wo=sqgrt (V*"2-Uo."2);
beta (lambda i+l) = sgrt (ko”2*nl1”2-(Uo/Rs) ."2);
neff (lambda i+1l) = beta(lambda i+1)/ko;
end

save neff2 lambdal beta neff

function S1=LP (U)
global V no ns m

W=sqrt (V"2-U."2);
Jp=(besselj (m-1,U) -besselj (m+1,U0))/2;
Kp= (besselk (m-1,W) +besselk (m+1,W))/2;
J=bessel]j (m,U) ;

K=besselk (m, W) ;

%$S1=(Jp./(U.*J) + Kp./(W.*K)).*((ns/no)"2*Jp./(U.*J)+Kp./ (W.*K))

mh2*(1./U."2+1./W."2) .* ((ns/no)"2./U."2+1./W."2);

Sl=besselj (0,U) ./ (U.*besselj(1,U)) - besselk(0,W)./(W.*besselk(l,W));

end
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A.3: Probability vs. Several other Parameters

A.3.1: Probability vs. window size

% Probability versus WINDOW SIZE

clear all
close all
warning off

9990000000000 00000000000 9909000000000 000 0

Lf = 0.395; % Fiber length in meters

step size = 1*10"(-12); % Average wavelength step of the tunable laser

tolerance = 0.02; % Tolerance in locating the peak (gives >99.9%
% of peak)

sigma = 0.17*10"-12;
for 1 = 1:30

coarse_sampling bandwidth (i) = i* 0.01*10"-9; % Width of window
Pnone averagel (i) = 1 - Probability(Lf,
coarse_sampling bandwidth (i), step size, tolerance, sigma)
end
% Convert to nm
coarse sampling bandwidth = coarse sampling bandwidth * 1079;

Q

% Plot the curve

figure

plot (coarse sampling bandwidth, Pnone averagel, 'b')
xlabel ('"Window Size in nm')

ylabel ('Probability')

sigma = 0.5*107-13; % sigma = 0
% Probability vs window size
for i = 1:30
coarse_sampling bandwidth (i) = i* 0.01*10"-9; % Width of window
Pnone average2 (i) = 1 - Probability(Lf,
coarse_sampling bandwidth (i), step size, tolerance, sigma)
end

%5 Convert to nm
coarse_sampling bandwidth = coarse sampling bandwidth * 1079;

Q

% Plot the curve
hold on
plot (coarse sampling bandwidth, Pnone average2, 'g')
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sigma = 1*10"-12;

% Probability vs window size

for i = 1:30
coarse_ sampling bandwidth (i) = i* 0.01*10"7-9; % Width of window
Pnone average3 (i) = 1 - Probability(Lf,
coarse_sampling bandwidth (i), step size, tolerance, sigma)

end

% Convert to nm

coarse_sampling bandwidth = coarse sampling bandwidth * 1079;

% Plot the curve
hold on
plot (coarse sampling bandwidth, Pnone average3, 'r')

A.3.2: Probability vs. average step size
% Probability versus STEP SIZE

clear all
close all
warning off

Lf = 0.395; % Fiber length in meters
tolerance = 0.02; % Tolerance in locating the peak
coarse_sampling bandwidth = 0.25*10"-9; % Width of window

for finding peak of envelope

555555555555 55%5%%%555%5%%%5555%%%555%5%%%55%5%5%5%%5%5%5%5%5%%55%5%5%5%5%%5%5%5%%
sigma = 0.05*%10"-12;
% Test program
for i = 1:20
step size(i) = i*0.1*107-12
Pnone average (i) = 1 - Probability(Lf, coarse_ sampling bandwidth,
step size(i), tolerance, sigma)
end
% Convert to pm
step size = step size * 10712;

% Plot the curve

figure

plot (step size,Pnone average, 'g')
xlabel ('Step Size in picometers')
ylabel ('Probability')
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hold on
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coarse_sampling bandwidth,

sigma)
lbl)

’

- Probability (Lf,

=1
tolerance,

i*0.1*%107-12

step size * 10712

20
step gize(i),

0.17*10"-12

Test program

for i

1

Pnone average (i)

step size (i)

Plot the curve
plot (step size,Pnone average,

Convert to pm

step size

°

sigma
o

E]

end

o

E]
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Pnone average (i)
tolerance,

’

step size * 10712

:20
step gize(i),

1*107-12

Test program

for i

1

step size (i)

Plot the curve
plot (step size,Pnone average

Convert to pm

step size
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Probability vs. fiber length

Independent parameters that may be varied

Probability versus FIBER LENGTH

clear all
close all

°

A.3.3
warning off
clc

o
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Average wavelength step of the tunable laser

%

’

Tolerance in locating the peak

%

N
°

’

’
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step_ size,

’

sigma)

coarse_sampling bandwidth,
tolerance,

)

xlabel ('Fiber Length in meters')

ylabel ('Probability')

hold on

- Probability(Lf (i),
step size,

1
lgl

coarse sampling bandwidth,

’

Probability(Lf,

150
0.01*1
Pnone average (1)

1

tolerance)

Probability vs Fiber length

i

Lf (i)
Plot the curve

o
o
figure

°

Appendix A: Matlab Code
plot (Lf, Pnone average,

%$Pnone average

o

E]

for i
end
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Probability vs Fiber length

for 1
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Plot the curve
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coarse sampling bandwidth,

1*10"-12
Probability vs Fiber length

1

Lf(1)
Plot the curve
plot (Lf, Pnone average,

°

sigma
Q

for i
end
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Tolerance

Probability vs.

°

A.3.4: Probability vs. tolerance

warning off

clear all
clc

close all

o
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Independent parameters that may be varied size

o°

Q
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Width of window

%

’

Tolerance in locating the peak

Fiber length in meters
Average wavelength step

o
°
o
o

%

’

1*10"(-12);
0.02
coarse_ sampling bandwidth = 0.25*10"-9

0.395;

step size
tolerance

Lf
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coarse sampling bandwidth,

Width of window

- Probability(Lf,

A\l A\l
g')
of the peak spacing of the carrier

°

o

sigma)

’

’

Standard deviation of the source

°

o

1

tolerance (i),

i* 0.001

4
%

50
= tolerance * 100

0.05*10"-12
step size,

1

Pnone average (1)

tolerance (1)
Convert to
tolerance
Plot the curve
figure

°

plot (tolerance, Pnone average,

ylabel ('Probability')

sigma

for i

end

xlabel ('Tolerance
hold on

[

o
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o\
o\
o

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
o©°
oo
oo
oo
oo
oo
oo
o
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
o

coarse_ sampling bandwidth,

Width of window
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Standard deviation of the source
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%

’
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1

i* 0.001

’

50
= tolerance * 100

0.17*10"-12
step size,

1

Pnone average (1)

tolerance (1)
Convert to
tolerance
Plot the curve

°

plot (tolerance, Pnone average,
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for 1
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Pnone average (i)

’

oS
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= tolerance * 100

step size,

1*107-12

1

tolerance (i)

Convert to
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Plot the curve
plot (tolerance, Pnone average
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A.3.5: The Probability calculating function

function Pnone average =
Probability (Lf, coarse sampling bandwidth,step size,tolerance, sigma)

% Dependent parameters
N = coarse sampling bandwidth/step size;

Q

% n = Step number, N = number of steps of the tunable laser

% Dependent on fiber

load neff2.mat % neff for single mode fiber calc from prog in A.2.6
neff fit = polyfit (lambdal, neff, 4); % Interpolated

lambda = 1510*10"-9:step size:1640*10"-9;

neff sim = polyval (neff fit, lambda):;

beta = (2*pi./lambda) .* neff sim;
ko=2*pi./lambda;
lambda p = lambda.”2./(2*neff sim*Lf);

o)

% Fringe period as a function of wavelength

% Determine M

summation = 0;

M= 1;

while summation < coarse sampling bandwidth
summation = summation + lambda p (M) ;

M = M+1l; % m = Peak number, M = number of peaks of
% carrier in the coarse sampling bandwidth
end
lambda p = summation/M;
% lambda p is now the average carrier period
% Dep on required tolerance
epsilon = tolerance*lambda p;
% Probability calculation
lambda0 = O:lambda p/100:lambda p;
Average of Pnone for different lambda0O's over the period
of one carrier wave using 100 slots

oe

o

Pnone = 1; $ Initialize
for m = 1:M
for n = 0:N-1
t upper = ((m*lambda p+(epsilon/2))-
(n*step sizetlambda0l))/((2)"0.5*sigma);
t lower = ((m*lambda p-(epsilon/2))-
(n*step size+lambda0))/((2)"0.5*sigma) ;
Pmn = 0.5* (erf (t upper)-erf(t lower));
Pnone = Pnone .* (1 - Pmn);
end
end
Pnone average = (1/100) * sum(Pnone);

% Equivalent to taking (l/period) * integral --> Averaging
% function
end
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A.4: Determining the Precision of the Measurements

A.4.1: Standard deviation of the SMF28™ Measurement

[

% Standard deviation of measured points for SMF

clear all
close all

clc

lambda = [1561.75 1562 1568.00625 1568.933 1570.6 1574.56 1578.92
1582.33 1582.5 1587.75 1591.85 1585.9 1585.179 1584.5 1582.0625 1578.35
1575.525];

D = [16.82755171 17.18662336 17.77326099 17.20098046 17.59624122
18.2471311 17.68196927 18.2652686 17.92272445 18.70175776 18.92026714
18.39241202 17.89563351 18.398473 17.65587929 17.87261432 17.83568272];

D eq = polyfit(lambda, D, 1);
D fit = polyval (D _eq, lambda):;

figure
plot (lambda, D, '.', lambda, D fit)

x =D - D fit;
mu = mean (x)
sigma = std(x)

A.4.2: Standard deviation of the DCF Measurement

% Standard deviation of measured points for DCF

clear all
close all
clc

lambda = [1589.58 1577.06 1571.69 1567.09 1561.29 1556.3875 1552.03
1549.04 1545.5 1549.45 1553.21 1556.94 1560.6 1563.96 1566.76 1569.38];
D = [-116.7629518 -111.959276 -112.4753801 -111.047913 -107.8351303 -
107.2692935 -108.0823711 -105.6770865 -103.8157538 -107.9982834 -
108.7332739 -108.7422301 -108.4420574 -110.2654607 -110.2692982 -
111.02904577;

D eq = polyfit(lambda, D, 1);

D fit = polyval (D _eq, lambda):;
figure

plot (lambda, D, '.', lambda, D fit)

x =D - D fit;
mu = mean (x)
sigma = std(x)
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A.4.3: Standard deviation of the THF Measurement

% Standard deviation of measured points for THF

clear all
close all
clc

lambda = [1616 1605.5 1597 1559.5 1557.5 1550 1557 1570 1578.5 1585
1587 1588.5 1588 1583 1580.5 1573.5 1568 1574 1576 1584.5];

D = [13.8648 13.0351 13.0996 12.3733 12.7532 12.9702 12.6568 12.7846
12.7902 12.8739 12.7401 12.6646 13.5784 13.2361 12.6629 12.4485 13.1504
13.6222 13.6876 13.3069];

D eq = polyfit(lambda, D, 1);
D fit = polyval (D eq, lambda);

figure
plot (lambda, D, '.', lambda, D fit)

x =D - D fit;
mu = mean (x)
sigma = std(x)
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Appendix B Corning SMF28™ Data Sheet

Corning” SMF-28" Optical Fiber

Product Information

Optical
Fiber

PI1036

Issued: April 2002
Supersedes: December 2001
ISO 9001 Registered

Corning’ Single-Mode Optical Fiber

The Standard For Performance Features And Benefits

Corning® SMF-28™ single-mode optical fiber e Versatility in 1310 nm and 1550 nm
has set the standard for value and performance applications

for telephony, cable television, submarine, and .

Enhanced optical properties that optimize

utlity network applications. Widely used in the transmission performance

trans mission of voice, data, and/or video

services, SMF-28 fiber is manufactured to the * Ousstanding geometrical properties for low
most demanding specifications in the industry. splice loss and high splice yield

SMF-28 fiber meets or exceeds ITU-T * OVD manufacturing reliability and product
Recommendation G.652, TIA/EIA-492CAAA, consistency

IEC Publicadon 60793-2 and GR-20-CORE

* Optmized for use in loose tube, ribbon, and

requirements. :
9 other common cable design

Taking advantage of today’s high-capacity, low-

cost transmission components developed for The Sales Leader

pue LAt wingon, SIAbIE Sher Safurs Corning SMF-28 fiber is the world's best selling
low dispersion and is optimized for use in the fiber. In 2001, SMF-28 fiber was deployed in over
1310 nm wavelength region. SMF-28 fiber also 45 countries around the world. All types of net-
can be used effectively with TDM and WDM work providers count on this fiber to support net-
SyStems operating in the 1550 nm wavelength work expansion into the 21st Century.

region.
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Protection And Versatilicy

SMEF-28 fiber is protected for long-term pe rform-
ance and reliability by the CPC®coatng system.
Coming’s enhanced, dual acrylate CPC coatings
provide excellent fiber provecdon and are easy o
work with. CPC coarings are designed to be
mechanically stripped and have an outside diame ter
of 245 pm. They are optimized for use in many
single- and multi-fiber cable designs includin g loose
tube, ribbon, slotred core, and tghe boffer cables.

Patented Quality Process

SMEF-28 fiber is mamifactared using the Ouside
Vapor Depositon (OVD) process, which produces a
otally synthetic ulera-pure fiber As a resule,
Corming SMF-28 fiber has consisent geometric
properties, high strength, and low atte mation.
Coming SMF-28 fiber can be counesd on wo deliver
excellent performance and high reliability, reel afeer
reel. Measnremnent methods comply wich TTU
recommendations G650, TEC 60793-1, and
Bellcore GR-20-CORE.

Optical Specifications

109
Atcenuation with Bending
Mandrel Mumber Induced
[Hamerer Wavelengeh  Aneroadon®
{mm) Turns (nm) (dB}
3z 1 1550 =0.50
50 109 1210 =005
50 100 1550 =010
0 100 1550 =005

*The induced arrenwmtion due o fiber wrap ped amund
a mandrelof a specifial dimeer,

Cable Curoff Wavelengeh (b )
Aot = 1260 nm
Moede-Ficld Dviawcter

2.2+ 04 pm ac 1310 nim
104 £ 0.8 jun ae 1550 nm

Dispersian
Zero Dispersion Wavelength ()
1302 nm = 3, 1322 nm

Zero Dispersion Slope (Sq):
= 0.092 ps/{nm3kom)

)

4
Dispersion = D(k):= % |:}".— ':":'} psfinmelam),
. A
for 1200 nm = & = 1600 nm
k= Operating Waveleng th

Attenma tion
Wavelength Axteriuadon® (dBdom)
{nmy) Freminm S ndand
1310 =034 =035
1550 =020 =022

*Alvernace arenuaion values avalable wpon request
Paint Discontinaity

Mo point discondnuity greater than 0,10 dB at either
1310 nm or 15350 nm.

Attenaation at the Water Peak

The amenuanion at 1383 + 3 nm shall not exceed
2.1 dB/Em.

Arenuaton vs. Wavelengeh

Ean, Ref Max. o Differmnce
{1 {nm} {dBskm)
1285 - 1330 1310 005
1525 - 1575 1550 005

The artemstion in a given wavelengh range does noc esceed
the arenmtion of the refaamce wawelagth (3) by more than the
walue ot

Polarization Mode Dispersion

Fiber Polariz ation Mode Dispersion (PMD)
Value ipsJlem)
PMD Link Value BN
Mazimum Ind#idual Fher =02
* Coamplies with TEC 60794 3:3001, secdon 5.5, Methed 1, Sepember 2001,

The PMD link value is a term used to describe
the PMD of concatenated lengths of fiber (also
known as the link quadrature average). This value
is used to determine a statistical upper limic for
system PMD performance.

Individual PMD) values may change when cabled.
Corning’ fiber specification suppors network
design requirements for a 0.5 ps/~lom

maximum PAMD.
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Environmental Specificatons

Ernvironmental Induced Areenuadon
Tesx Condidon 1310 nm/1550 nm
{d B/lemm)
Tem pera ture Diependence
607w 4857 CF =005
Tem pera ture-
Humidity Cycling
1050 o 485707
up tx #8% RH = .05
Warer Immersion, 237+ 2°C* =005
Heac Aging, 85° + 2°C* £0.08
“Reference emperamne = +23°5C
Operating Temperainre Range

607 C o +85°C

Dimensional Specifications

Lengeh (kmdecl): ibar lengds availabe up to 50.4°

* Longer spliced lengrths smilableara premivm.

Celass Geometry
Fiber Caurl: =z 4.0 m radius of curvarure
Cladding Diamerer: 125.0 + 0.7 pm
Core-Clad Concentricity: = 005 pm
Cladding Won-Circulario: = 1.0%

Defined as: [1 Min Chddx.ng DJ.E:I'.I'I.:tCI'] « 100
Max. Cladd ing Diamerer

Comting Geomerry
Coating Diameeer: 245 £5 pm
Coaring-Cladding Concenericiey: <12 pm

Refractive Index Profile (typical fiber)

Me chanical Specifications
Proof Test

The entire fiber length is subjeceed to a ensile
proof smess = 100 kpsi (0.7 GIN/m)y®.

* Higher proof wst kevels avaibbleara premium.

Performance Characterizations
Chaacter ized pavariesrs ae tipiod valies.

Core Dvgmmeter: 5.2 pm

Nurmmerical Apersre: 0.14

MA Is measured at the one percent power level
of a one-dimensional far-field scan ar 1310 nm.

Zero Dispersion Wavelengeh (hgk 1313 nm
Fero Dvispervion Slope (Sg): (L086 pe /it somy)
Refractive Indev Difference: 0.36%

Effearive Group Indey of Refraction,
(Nog @ nominal MFILY):

1.4677 at 1310 nm
1.46582 at 1550 nm

Fatipne Resistance Parameter (ng): 20
Coating Sirip Force:

Dry: 0.6 1bs. (31)

Wee, 14-day room eemperamre: 0.6 lbs. (3I14)

Rayleigh Backscaster Coefficicnt
{for 1 ns pulse width):

1310 nm: -77 dB
1550 nm: -82 dB

Spectral Avtenuation (typical fiber)

A Refractive Index (%)

-0l

L.05
094
08
07+
06
05
044
03+
0.2
014

on

25

-15

50 5
Roadius {pm 3

.04 nm dBdm
vt a As0 14
e b 1300 nas
e e 130 0.4
F 30 P T T
a 2.5 L] 1550 [N b
=
= a
g 2 e
a
E 1.5 4 d
LT
b l “
0.4
0o T T T T T 1
= n) 1000 1200 1400 1500
Wavelkrgeh gom
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Ordering Information

To order Corning® SMF-28" fiber, contact your
sales representative, or call the Opeical Fiber
Cuscomer Service Deparement ar 607-245-
2000 or +44-1244-287-437 in Europe.
Please specify the following parameters when

ordering,.

Fiber Tape: Corning® SMF-258" Fiber
Fiber Attenuation: dBdm

Fiber Quantity: lam

Odher: (Requested ship date, erc.)

Coming Inco rporated
wiwnw.cor ning.ocomyfopt icalfiber

One Rherfront Plaza
Corning, MY 14831
LLS.A,

Phone: B00-525-2524 (L5 and Canada)
GOT-TE6-E125 (Internationa )

Fax: 800-532-3632 (US. and Camada)
GOT-TE6-E344 (Internationa )

Emall: coflc@carning.com

Europe

Phope: 00 800 6620 6621 (LK, Ireland, Raly, France,
Germany, The Metherlands, Spain and Sweden)

+1 G607 7E6 8125 (Al other countries)
Famx: +1 607 786 8344

Asla Padfic Greater China
Australla Belling
FPhone : 1-800-148 550 Phone: (86)10-6505-5066
Fax: 1-800-148-568 Fax:(86&) 10-6505-5077
Indonesla Hong KD”EZ
FPhone: O01-803-015-T21-1261 Phore: (B52)2807-2723
Fax: 001-803-015-721-1262 Fax:(852) 2807-2152
Malaysia Shan
g ghal

EE',":T' Lo00-ana1se Phoné: (26)21-32 22-4668

. Fax:(86) 21-6288-1575
Phillppines Tatwan
Phone: 1-800-1-116-0338 . - -
Fax: 1-800-1-116-0339 EE',";:”E;EEB:,BEE. 22 160358

5ingapore
Phone: 800-1300-955
Fax: 800-1300-956

Thalland
Phone: O01-800-1-3-721-1263
Fax: 001-800-1-3-721-1264

E-mall: GCCof k@ corning com

Latin America

Brazil
hone: DOOB17-762-4732
Fax: 000817-762-4996

L
Phone: 001-800-235-1719
Fax: 001-800-339-1472

Venezuela
hone: 800-1-4418
Fau: 800-1-4419

Corning isa registersd tmdemark SMF22and CRC are trade marks of Corning
ncoporated, Coming M.

Ary warmnky of ary nature mlatingto ary Corming optical fibe riz onby con-
tained in the writte n agresment betwesn Corning Incorporated and the dirsct
purchaser of such fiber

02, Corning Incorporated
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