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Abstract 
 

Single-arm three wave interferometer for measuring dispersion in short lengths of fiber 

 

 

Michael Anthony Galle 

 

Master of Applied Science 

 

Graduate Department of Electrical & Computer Engineering 

 

University of Toronto 

 

2007 

 

A simple fiber-based single-arm spectral interferometer to measure the dispersion 

parameter in short lengths (DL) of fiber (< 50 cm) with a measurement precision of 

0.0001 ps/nm is developed. Dispersion is measured by examining the envelope of the 

interference pattern produced by three interfering waves: two from the facets of the test 

fiber and one from a mirror placed behind it. The operational constraints on system 

parameters are discussed and a method for extending one of them is introduced. 

Experimental verification of this technique is carried out via comparison of 

measurements made on SMF28
TM

 and DCF with those made using conventional 

techniques. Moreover, this new technique is used to measure the dispersion of twin-hole 

fiber for the first time.  
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Chapter 1: Introduction 
 

 

The design of photonic devices heavily depends on an accurate characterization of the 

components used. One of the main components in a photonic device is an optical fiber 

which serves as a low-loss medium for light transmission. An important characteristic of 

fiber is the dispersion that light experiences as it travels inside the fiber. Dispersion is the 

phenomenon that causes different frequencies of light to travel at different velocities. The 

phenomenon of dispersion is commonly observed through the spreading of light by a 

prism. When white light, which contains a broad spectrum of frequencies, enters a prism 

the different wavelengths are bent at different angles since each frequency sees a 

different index of refraction, a phenomenon first quantified by Newton in the 17th 

century [1]. Inside a fiber this variation in the index of refraction with frequency is what 

causes the frequency dependence of the velocity.    

A more modern example of the phenomenon of dispersion is the affect it has on 

the performance of photonic devices used in communication systems. In these systems, 

dispersion, or more specifically second order dispersion, leads to a broadening of the 

pulses used to represent 1 or 0 in a digital communication system. Pulse broadening 

causes adjacent bits to overlap and leads to intersymbol interference [2]. Intersymbol 

interference occurs when a pulse is broadened beyond its allocated bit slot to such an 

extent that it begins to overlap with adjacent bits and it is no longer possible to determine 

whether or not a specific bit contains a 1 or a 0. This effect is illustrated in Fig. 1-1: 
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Fig. 1-1: Intersymbol interference caused by dispersion leads to reduction in system bandwidth. 

 

 

As a result of intersymbol interference the allocated bit slots must be widened and 

this effectively lowers the number of bits that can be transmitted in a given period of time 

and reduces the system bandwidth [2]. As a result modern communication systems have 

evolved methods to mitigate the effects of dispersion.  

Current methods of countering the effects of dispersion in an optical fiber use 

dispersion compensating devices such as chirped fiber Bragg gratings and dispersion 

compensating fiber (DCF) [2]. In order to effectively use these techniques it is critical to 

know the exact magnitude of the dispersion that is being compensated for. As a result 

knowledge of the dispersion in both the transmission system and the dispersion 

compensation system is critical to the design of the overall communication system.  

For example, in order to determine the length of dispersion compensating fiber 

required to compensate for the dispersion incurred in a span of standard single mode 

fiber, one must know the dispersion in both types of fiber as well as the exact length of 

single mode fiber for which the dispersion is to be compensated [2]. The dispersion in the 

optical fiber can then be compensated by splicing a length of DCF given by:  

   
)(

)(





DCF

FiberFiber

DCF
D

DL
L      Eq. 1-1 [2] 
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D is known as the second order dispersion parameter which is a function of the 

second order dispersion of the fiber. Its significance and its effect on an optical signal 

will be discussed in detail in chapter 2.  

Knowledge of dispersion in a fiber is also critical for the study of fiber based 

nonlinear wave interaction phenomena. An optical soliton is a pulse that maintains a 

constant shape (width) as it propagates along a fiber (first order soliton) or has a shape 

that is periodic with propagation (higher order soliton) [3, 4]. This is due to the fact that 

the effects of dispersion and self phase modulation (SPM) are in balance [4-5]. SPM is 

the effect whereby the phase of a given pulse is modified by its own intensity profile [6]. 

Knowledge of the dispersion in an optical fiber allows for the determination of the 

required intensity for the formation of an optical soliton. This effect has also been used in 

the area of soliton effect pulse compression [5, 7, 8] where the combination of the 

chirping effect of SPM and subsequent distributed compression effect of negative 

dispersion is used to compress an optical pulse [7]. Knowledge of dispersion is also 

important for the study of nonlinear effects such as second harmonic generation, three-

wave mixing and four-wave mixing since it determines the interaction lengths between 

the various wavelengths. Dispersion is particularly important in techniques that aim to 

extend this interaction length such as in Quasi Phase Matching (QPM) devices [9-11].     

1.1 Motivation 

The motivation for this thesis is to measure the dispersion parameter in short lengths of 

optical fiber. More accurately the method is required to measure fiber with small 

dispersion length products (DL). The initial need for a short length characterization 

scheme came from the need to measure the dispersion of a type of specialty fiber known 
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as the twin-hole fiber (THF) (Ch 5.6). This fiber is not easy to acquire and is expensive to 

produce therefore the use of conventional dispersion measurement techniques requiring 

long lengths of fiber (Ch. 3) are not possible. The principle reason for measuring the 

dispersion in THF is to study nonlinear wave interaction phenomena in these fibers. 

Knowledge of the dispersion was also of practical importance since we planned to use 

QPM to increase the interaction length [9-11]. Short length characterization was also 

required because the fiber geometry of THF is not uniform along its length which results 

in a variation of the dispersion along the fiber length. The dispersion measurement on a 

long length of fiber, therefore, is different than the dispersion in a given section of that 

fiber. Typically only a small section of THF is used in QPM experiments and therefore 

the dispersion of the specific section of THF used in the experiment must be measured.   

Short length (small DL) characterization is not only required for THF but it is also 

necessary for other types of specialty fiber as well. Photonic Crystal Fiber (PCF) [12-14], 

for example, can be used for dispersion compensation (DC-PCF) [13]. For devices with 

small dispersion length (DL) products, such as fiber laser cavities [3], the length of the 

dispersion compensation fiber required is very short. As a result, it is necessary to 

measure the dispersion in the exact section of DC-PCF that will be used in the system. 

Recent advances in Microstructured fiber or PCF allow for a high degree of control over 

the dispersion [14]. This has led to a need for experimental testing to determine how 

close the dispersion in the fabricated device is to the predicted theoretical dispersion. 

Experimental verification of the theoretical dispersion is less expensive when only short 

lengths of this fiber are required and therefore it is both convenient and economical if 

dispersion can be measured on short lengths of fiber.  
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Gain fiber is another type of specialty fiber for which it is desirable to have a 

short length dispersion measurement technique. Typically short lengths of gain fiber are 

used to compensate for losses in a long haul optical transmission line [15].  The 

dispersion in these short lengths of gain fiber must be known in order for dispersion 

compensation schemes to accurately compensate for the dispersion produced in the entire 

channel. The dispersion is of particular importance when these gain fibers are used to 

make mode locked fiber lasers [4] since dispersion affects the group velocity of a pulse 

within the cavity [2] it also affects mode locking schemes.    

 

1.2 Objectives 

The primary objective of this thesis is the development of a technique to measure the 

dispersion parameter in fiber lengths below 50 cm (small DL products). The first 

objective is to develop and test the technique by comparing its results with published (or 

conventionally measured) dispersion parameter curves for SMF28
TM

 and Dispersion 

Compensating Fiber (DCF). Second, the theory for the technique will be further 

investigated and operational constraints will be outlined. Third, the dispersion parameter 

of Twin Hole fiber (THF) will be measured. The dispersion parameter for this fiber has 

not yet been reported in the literature. The fourth and final objective is to show that this 

technique is conducive to commercial development, since it can measure waveguides and 

optical fibers from several centimeters to a few meters in length, without the 

complications introduced by conventional interferometric dispersion techniques such as 

the dual arm techniques. 
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1.3 Organization of Thesis 

 

This thesis is organized into six chapters. The first chapter introduced the topic of 

dispersion and the motivation and objective behind this work. The second chapter 

outlines the basic theory behind light propagation in a fiber and introduces the concept of 

chromatic dispersion. It also outlines how both the material and the waveguide dispersion 

are combined to yield the total chromatic dispersion in a waveguide. The third chapter 

surveys the conventional techniques for measuring chromatic dispersion in optical fiber. 

 

The fourth chapter describes the theory and limitations of the novel single arm 

interferometer developed in this thesis for dispersion characterization of short length 

optical elements. It also shows how some of these limitations can be relaxed so that a 

larger range of fiber length can be characterized using the technique. The fifth chapter 

describes the experimental results used to verify and implement the new technique. 

Characterization is first performed on Corning SMF28
TM

 since the dispersion curves are 

well known and can be used to verify the validity of the theory and the technique. As a 

second verification the technique is applied to dispersion compensating fiber. Once the 

technique has been verified and tested it is used to characterize specialty fiber known as 

Twin Hole Fiber for which the dispersion curves have not yet been reported. The sixth 

chapter concludes the thesis by summarizing the benefits of the single arm interferometer 

and by describing the contributions this new technology can make to the field of optical 

characterization. The thesis is concluded with an examination of the future work that is 

required in order to develop a commercial device from this technology.  
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Chapter 2: Theory on Chromatic Dispersion of a 
Waveguide 
 

 

Dispersion is the phenomenon whereby the index of refraction of a material varies with 

the frequency or wavelength of the radiation being transmitted through it [1]. The term 

‘Chromatic Dispersion’ is often used to emphasize this wavelength dependence. The total 

dispersion in a waveguide or an optical fiber is a function of both the material 

composition (material dispersion) and the geometry of the waveguide (waveguide 

dispersion). This chapter outlines the contributions of both material and waveguide 

dispersion, identifies their physical source and develops the mathematical terminology 

for their description.     

2.1 Dispersion in a Waveguide 

 

When light is confined in an optical fiber or waveguide the index is a property of both the 

material and the geometry of the waveguide. The waveguide geometry changes the 

refractive index via optical confinement by the waveguide structure. The refractive index 

is therefore a function of both the material and waveguide contributions. For this reason 

in a fiber or a waveguide the index is known as an effective index.  

The relationship between the effective index and the first, second and higher order 

dispersion can be understood mathematically via a Taylor expansion: 

...)()()()(
3

3

3

2

2

2  o

eff

oo

eff

oo

eff

ooeffeff
d

nd

d

nd

d

dn
nn 








  

Eq. 2-1 
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The first term in Eq. 2-1 represents the linear portion of the effective index as a 

function of wavelength and shows how dispersion manifests itself in the wavelength 

dependence of the phase velocity for a wave inside a medium. The relationship between 

the first term and the phase velocity is described in Eq. 2-2:  

    
)(

)(
oeff

op
n

c
V


       Eq. 2-2 [3] 

 

The second term in Eq. 2-1 is related to the group velocity of an optical pulse and 

represents the first order dispersion. The group velocity is the velocity that the envelope 

of an optical pulse propagates. It depends on a quantity known as the group index, NG, 

which is a function of both the index of refraction and the slope of the index of refraction 

at a particular wavelength. The group velocity relates to the second term via Eq. 2-3 

where c is the velocity of light in vacuum:   

 

oo d
dnn

c

d
dnn

c

N

c
V

ooooG

og

 












)()(

)(           Eq. 2-3 [3] 

 

The third term in Eq. 2-1 represents the variation in the group velocity as a 

function of wavelength. This variation in the group velocity is known as Group Velocity 

Dispersion, GVD, which is related to the third term via Eq. 2-4, where λo is the particular 

wavelength for which the GVD is calculated and c is the speed of light in vacuum: 

      














2

22

2
)(










d

nd

cc
GVD

effoo

o    Eq. 2-4 [2] 

 

The term in the brackets in Eq. 2-4 is known as the dispersion parameter, D, 

which represents second order dispersion since it describes how the second derivative of 

the effective index varies with respect to wavelength: 
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o

d

nd

c
D

effo

o







2

2

)(     Eq. 2-5 [16] 

 

The dispersion parameter is important since it is related to pulse broadening 

which critically limits the bit rate of a communication system. Eq. 2-6 shows how an 

increase in the dispersion parameter directly relates to an increase in pulse broadening: 

 

        LDT o )(      Eq. 2-6 [2] 

 

In Eq. 2-6 Δλ is the range of wavelengths traveling through the medium and L is 

the length of the medium. The dispersion parameter, D(λo), which is related to pulse 

broadening, is the most significant parameter since it limits the bit rate of an optical 

communication system.  

The dispersion parameter of a waveguide such as an optical fiber is given by the 

total dispersion due to both the material and waveguide contributions. The total 

dispersion is the combination of the material dispersion and the waveguide dispersion and 

thus the dispersion parameter of a waveguide is given by: 

 

   WM

G

DD
Vd

dc
D 












12
2 


   Eq. 2-7 [2] 

 

The next two sections discuss the contributions that both material and waveguide 

dispersion make individually to the total dispersion.  

 



Chapter 2: Theory on Chromatic Dispersion of a Waveguidewww.inometrix.com 10  

 

2.2 Material Dispersion  

Material dispersion originates from the frequency or wavelength dependent response of 

the atoms/molecules of a material to electromagnetic waves. All media are dispersive and 

the only non-dispersive medium is vacuum [1]. The source of material dispersion can be 

examined from an understanding of the atomic nature of matter and the frequency 

dependent aspect of that nature [1]. Material dispersion occurs because atoms absorb and 

re-radiate electromagnetic radiation more efficiently as the frequency approaches a 

certain characteristic frequency for that particular atom called the resonance frequency 

[1].  

When an applied electric field impinges on an atom it distorts the charge cloud 

surrounding that atom and induces a polarization that is inversely proportional to the 

relative difference between the frequency of the field and the resonance frequency of the 

atom [1]. Thus the closer the frequency of the electromagnetic radiation is to the atoms 

resonance frequency the larger the induced polarization and the larger the displacement 

between the negative charge cloud and the positive nucleus. The relative displacement 

between the electron cloud and the nucleus is given by the Lorentz Oscillator Model [1] 

as:  

    E
mq

x
o

ee

)(

/
22

 
     Eq. 2-8 [1] 

 

The induced polarization is given by: 

       

EP

xqP

o

e

)(  



       Eq. 2-9 [1] 
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The index of refraction is given by the relationship between the induced 

polarization and the incident electric field. It is known as the dispersion equation [1] and 

is given by Eq. 2-10:  

  

















22

0

2

2 1
11)(






oe

e

oo m

q

E

P
n        Eq. 2-10 [1] 

 

In this equation n(ω) is known as the absolute index of refraction [1] since it is the 

index of refraction seen by light of frequency ω in bulk media. It illustrates 

mathematically how the index of refraction varies for different frequencies (wavelengths) 

according to how close they are to a resonance frequency of the atom.   

Given this knowledge of n(ω), the group index of the material can be determined 

via 
oo

ddnnddnnN ooooG    )()( . The material dispersion is then 

determined by taking the derivative of the group index of the material with respect to 

wavelength or equivalently the second derivative of the absolute index with respect to 

wavelength:  

   









2

21





 d

nd

cd

dN

c
D G

M     Eq. 2-11 [2] 

2.3 Waveguide Dispersion 

 

Waveguide dispersion occurs because waveguide geometry variably affects the velocity 

of different frequencies of light. More technically, waveguide dispersion is caused by the 

variation in the index of refraction due to the confinement of light an optical mode [3]. 

Waveguide dispersion is a function of the material parameters of the waveguide such as 

the normalized core-cladding index difference,  
corecladdingcore nnn  , and 
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geometrical parameters such as the core size, a [2, 17]. The index in a waveguide is 

known as an effective index, neff, because of the portion of the index change caused by 

propagation in a confined medium. 

Confinement is best described by a quantity known as the V parameter, which is a 

function of both the material and geometry of the waveguide. The V parameter is given 

by Eq. 2-12: 

   2
2

)(
2

)( 2/122

corecladdingcore annnaV







   Eq. 2-12 [2] 

 

Propagation in a waveguide is described by a quantity known as the normalized 

propagation constant, b, which is also a function of the material and geometry of the 

waveguide. This quantity is given in Eq. 2-13:  

    

claddingcore

claddingeff

nn

nn
b




     Eq. 2-13 [2] 

 

The contribution of the waveguide to the dispersion parameter depends on the 

confinement and propagation of the light in a waveguide and hence it is a function of 

both the V parameter and the normalized propagation constant, b. The waveguide 

dispersion can be calculated via knowledge of V and b via Eq. 2-14: 
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  Eq. 2-14 [2] 

 

 In most cases the main effect of the waveguide dispersion in standard single 

mode fibers is a reduction in dispersion compared to dispersion in bulk [2]. In 

comparison to material dispersion the contribution of waveguide dispersion is quite small  
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and in most standard single mode fibers it only shifts the zero dispersion wavelength 

from 1276nm to 1310nm [2]. This effect is illustrated in Fig. 2-1:  

 

Fig.  2-1: Contributions of both waveguide and material dispersion [2] 

 

In summary, the dispersion in a waveguide or an optical fiber is caused not only by the 

material but also by the effect of confinement and propagation in the waveguide. Thus 

accurate knowledge of the dispersion in a waveguide cannot be made by simple 

knowledge of the material dispersion but must include the effect of the waveguide. As a 

result either the dimensions of the waveguide must be known to a high degree of 

accuracy so that the waveguide dispersion can be calculated (which is not easy since 

fabrication processes are hardly perfect) or the dispersion must be measured empirically. 

Accurate measurement of the (total) dispersion parameter, D, is critical to the design of 
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photonic systems. Measurement techniques for the determination of the dispersion 

parameter will now be discussed in the next chapter. 
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Chapter 3: Conventional Measurement Techniques 
 

 

There are 3 categories of dispersion measurement techniques: Time of flight (TOF) [18], 

Modulation phase shift (MPS) [17, 19] and Interferometric [16]. TOF and MPS are the 

most widely used commercial dispersion measurement techniques. Interferometric 

techniques are not widely used commercially but have been used in laboratories for 

dispersion measurements. Interferometric techniques come in two forms; temporal and 

spectral. This chapter surveys the existing techniques, their advantages and disadvantages 

and concludes with a quantitative comparison of the various dispersion measurement 

techniques in terms of measurement precision and fiber length requirements.    

3.1 Time of Flight Technique  

 

 

In the TOF technique the second order dispersion parameter, D, hereafter referred to 

simply as the dispersion parameter, can be determined either by measuring the relative 

temporal delay between pulses at different wavelengths or by measuring the pulse 

broadening itself. The relative temporal delay between pulses at different wavelengths is 

measured to determine the group velocity which can then be used to determine the 

dispersion parameter using Eq. 3-1:  

         
)(

)(
o

o
L

t
D







     Eq. 3-1 [16] 

 

The above equation can also be used to determine the dispersion parameter from 

the pulse broadening itself if Δt is the measured pulse broadening and Δλ is the 

bandwidth of the wavelengths in the puilse. The measurement precision achievable by the 
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TOF technique is on the order of 1 ps/nm [17]. The setup for such a system is shown in 

the Fig. 3-1: 

 
Fig. 3-1:  Time of flight dispersion measurement technique 

 

  

One of the main problems with the TOF technique is that it generally requires 

several kilometers of fiber to accumulate an appreciable difference in time for different 

wavelengths. Another issue with the TOF technique when the pulse broadening is 

measured directly is that the pulse width is affected by changes in the pulse shape which 

leads to errors in the measurement of the dispersion parameter. As a result, in order to 

measure the dispersion parameter with a precision near 1 ps/nm-km several kilometers of 

fiber are required [16]. Another long fiber measurement technique is now discussed in the 

next section. 

3.2 Modulation Phase Shift Technique 

 

The MPS technique is another dispersion characterization technique that requires long 

lengths of fiber. In the MPS technique, a continuous-wave optical signal is amplitude 

modulated by an RF signal, and the dispersion parameter is determined by measuring the 

RF phase delay experienced by the optical carriers at the different wavelengths. A 

diagram of the experimental implementation of this technique is shown in Fig. 3-2:   

Tunable Laser @ λ1 Detector (t1) 

Detector (t2) Tunable Laser @ λ2 
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Fig.  3-2: Modulation Phase Shift Dispersion Measurement Technique 

 

The RF phase delay information is extracted by this technique, and by taking the 

second derivative of the phase information, the dispersion parameter can be determined. 

Measurement precision achievable by the MPS technique is on the order of 0.07 ps/nm 

[20]. Due to its higher precision, MPS has become the industry standard for measuring 

dispersion in optical fibers. However, MPS, has several disadvantages. The first is that it 

is expensive to implement since the components required such as an RF analyzer and a 

tunable laser, are costly. The second is that its precision is limited by both the stability 

and jitter of the RF signal [21, 22].     

MPS has several limitations on the minimum device length that it is capable of 

characterizing. In the MPS method the width of the modulated signal limits the minimum 

characterizable device length. This method also typically requires fiber lengths in excess 

of tens of meters to obtain a precision to better than 1 ps/nm-km [16]. Therefore it is not 

desirable for the characterization of specialty fibers or gain fibers [23], of which long 

fiber lengths are expensive to acquire or not available. Also, when fiber uniformity 

changes significantly along its length, the dispersion of a long span of fiber cannot be 

used to accurately represent that of a short section of fiber. In such cases, dispersion 

Tunable Laser @ λ1 Detector 

 

Carrier @ λ1 

Carrier @ λ2 

RF  
analyzer 

Amplitude Modulated Envelope 
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measurement performed directly on short fiber samples is desirable. As a result a 

technique for measuring the dispersion of short lengths of fiber is desired. 

 

3.3 Dispersion Measurements on Short Length Fiber 

 

Interferometric techniques are capable of characterizing the dispersion on fiber lengths 

below 1m [16] (fiber with small DL products). There are two categories of 

interferometric techniques for making dispersion measurements on fiber of short length: 

temporal and spectral. These two categories will be discussed in detail in the following 

sections.  

3.3.1 Temporal Interferometry (Fourier Transform Spectroscopy) 

 

 
 

Fig. 3-3: Experimental setup for dual arm temporal interferometry 

 

 

Dual Arm temporal interferometry employs a broadband source and a variable optical 

path to produce a temporal interferogram between a fixed path through the test fiber and 

variable air path. It involves moving one arm of the interferometer at a constant speed 

and plotting the interference pattern as a function of delay length (time) [23-32]. The 

spectral amplitude and phase are then determined from the Fourier transform of the 

temporal interferogram. A sample temporal interference pattern is shown in Fig. 3-4: 
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Fig. 3-4: Sample Temporal Interferogram [24] 

 

A temporal interferogram gives the phase variation as a function of time. The 

spectral phase variation can be extracted from the temporal interferogram if a Fourier 

Transform is applied to it. The spectral phase contains the dispersion information which 

can be indirectly obtained by taking the second derivative of the spectral phase. A 

precision of 0.0015 ps/nm measured on a 0.814-m-long photonic crystal fiber [29] was 

recently reported using temporal interferometry. The main disadvantage of temporal 

interferometry is that it is susceptible to noise resulting from both translation inaccuracy 

and vibration of the optics in the variable path. A tracking laser is typically required to 

calibrate the delay path length [26, 29]. Another problem with this technique is that a 

second derivative of the phase information must be taken to obtain the dispersion 

parameter which means that it is less accurate than a method that can obtain the 

dispersion parameter directly. A method for obtaining the dispersion parameter directly is 

now discussed in the next section.   
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3.3.2 Spectral Interferometry 

 

Spectral interferometry, like temporal interferometry, is capable of characterizing 

the dispersion in short length fiber (< 1m) (or fiber with a small DL product). In spectral 

interferometry, instead of stepping the length of one of the arms, a scan of the wavelength 

domain performed to produce a spectral interferogram. Spectral interferometry is 

generally more stable than temporal interferometry since the arms of the interferometer 

are kept stationary. Thus it is simpler than temporal interferometry since no tracking laser 

is necessary.  

There are two types of spectral interferometry, one is general and does not require 

balancing, and another, the special case, is ‘balanced’. In the balanced case it is possible 

to directly measure the dispersion parameter from the interferogram. This makes it more 

accurate than temporal interferometry and it is for this reason that spectral interferometry 

is discussed as a dispersion measurement technique. We first examine the more general 

case of spectral interferometry. 

 

  

General Case: Unbalanced 

 

 

In general spectral interferometry the dispersion parameter is obtained from the 

interference spectrum produced by two time delayed light pulses/beams in an unbalanced 

dual arm interferometer. Two pulses/beams from the two arms of the interferometer are 

set up to interfere in a spectrometer and a spectral interferogram is produced. The 

interference pattern produced for a given time or phase delay is given by:  
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Eq. 3-2 [33] 

 

The last two terms in Eq. 3-2 result in spectral interference pattern via a 

))(cos(    term. This interference pattern is seen in Fig. 3-5.  

 

Fig. 3.5: Interference pattern produced by two time delayed pulses [34] 

 

There are several ways to extract the phase information from the cosine term but 

the most prevalent way to do so is to take the Inverse Fourier transform of the spectral 

interference pattern. Note that ))(exp()()()(..)( *   iEEtfTFf o [33] contains 

all the phase information on the spectral phase difference )( . Therefore, if )(f  can 

be extracted from the interference pattern then the phase difference information can be 

known. If an Inverse Fourier Transform of the spectral interference is performed on the 

interference pattern the following is obtained:  

***1 )()()()()()())((..   tftftEtEtEtEITF oo  

Eq. 3-3 [33] 
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If all terms except the )( tf term get filtered out via a band pass filter then the 

phase information can be extracted from a Fourier Transform on )( tf . A graphical 

description of this process is given in Fig. 3-6: 

 

 
Fig. 3-6: Filtering out all but the f(t-τ) terms so that the phase information can be extracted [34] 

 

 

The phase information can then be extracted if a Fourier Transform is applied to 

the filtered component f(t-τ) to transfer it back to the spectral domain. The complex 

amplitude therefore becomes ))(exp()()()(   iEEf o [33, 34]. The phase 

of this complex amplitude minus the linear part (ωτ) that is due to the delay, yields the 

spectral phase difference between the two pulses as a function of ω and is independent of 

the delay between the two pulses [33, 34]. In this way the phase difference between the 

two pulses can be obtained. A sample plot of the amplitude and phase information 

retrieved using this method is shown in Fig. 3-7:  
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Fig. 3-7: Amplitude and phase spectrum of f(ω) [34] 

  

 

If one of the pulses travels through a non-dispersive medium such as air and the 

other pulse travels through a dispersive medium such as an optical fiber then the phase 

difference spectrum will be directly related to the dispersion in the fiber. Thus the 

dispersion parameter plot can be determined by taking the second derivative of the phase 

difference spectrum with respect to wavelength.  

The main issue with this form of spectral interferometry, however, is that the 

dispersion parameter is not determined directly but rather via a second order derivative of 

the phase information with respect to wavelength. Therefore, like temporal 

interferometry, this general unbalanced form of spectral interferometry is not as accurate 

as the method capable of measuring the dispersion parameter directly which will be 

discussed in the next section on balanced interferometry. 
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Special Case: Balanced  

 

 

In balanced spectral interferometry the arm lengths of an interferometer are kept constant 

and they are balanced for a given wavelength called the central wavelength such that the 

group delay in both arms is the same. This allows for the removal of the effect of the 

large linear dispersion term in the interferogram. Balanced interferometry measures the 

dispersion parameter D at the wavelength at which the group delay is the same in both 

arms. This wavelength is henceforth referred to as the central wavelength.  The 

dispersion parameter in this case can be directly determined from the phase information 

in the spectral interferogram without differentiation of the phase. For this reason it is 

more accurate than both unbalanced general spectral interferometry and temporal 

interferometry. As a result balanced spectral interferometry is often used to obtain 

accurate dispersion measurements in short length waveguides and fibers. A precision of 

0.00007 ps/nm has been reported on a 1 m long SMF using this technique [16]. The 

experimental setup for balanced spectral interferometry is shown in Fig. 3-8.    

 

 

 
Fig. 3-8: Experimental setup for Spectral Interferometry 

 

A sample spectral interference pattern produced from the setup in Fig. 3-8 is 

shown in Fig. 3-9.  The central wavelength can be seen in this interferogram and is 
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labeled


 . The dispersion parameter can be determined at the central wavelength, 


 , 

from the phase information given by the wavelength separation between the 

peaks/troughs of the interferogram [16].   

 

Fig. 3-9: Sample spectral interferogram [16] 

 

Both forms of spectral interferometry are considered to be less susceptible to 

noise since the arms of the interferometer are kept still and there are no moving parts. It is 

for this reason that spectral interferometry in general is considered to be more accurate 

than temporal interferometry. Spectral interferometry is therefore considered to be the 

technique of choice for measuring the dispersion of photonic components [34-37] and 

spectral depth resolved optical imaging [38, 39]. One well known and important class of 

spectral interferometry is optical coherence tomography (OCT) [40-45].   

The resolution of balanced spectral interferometry, in particular, can be improved 

by replacing the combination broadband source and Optical Spectrum Analyzer shown in 

Fig. 3-8 with a tunable laser and detector system. Current tunable laser technology allows 
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for a bandwidth of 130 nm and a 1 picometer resolution. This improves the range of fiber 

lengths that can be measured using this technique. Also of note is that the use of tunable 

lasers for dispersion measurement is becoming more widespread [46] as they decrease in 

cost.   

Balanced dual arm spectral interferometers are typically in a Michelson or a Mach 

Zehnder configuration in which the path lengths are equalized at the given wavelength in 

which the dispersion is to be measured [23, 24, 32]. The most often used configuration, 

however, is the Michelson and the discussion that follows considers the Michelson 

interferometer. In a balanced Michelson interferometer the dispersion is measured from 

the interference between two waves: one that passes through the test fiber and another 

that passes through an air path. Balancing the air path length with the fiber eliminates the 

effect of the group index of the fiber in the interference pattern. This allows for the 

measurement of the second derivative of the effective index with respect to wavelength 

directly from the interference pattern [16]. 

The main disadvantage of this configuration is that, for this to work, two types of 

path balancing must occur simultaneously. The first type of path balancing is coupler arm 

balancing illustrated in red in Fig. 3-10:  

 

Fig. 3-10: Balanced path requirements for a Michelson interferometer 
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The path lengths of both arms coming out of the coupler (highlighted in red) need 

to be balanced exactly or an extra set of interference fringes will be created from the 

reflections at the two end facets of the coupler arms as shown in Fig. 3-11.  

 
Fig. 3-11: Interference of the coupler arm reflections 

 

The second type of balancing is test fiber-air path balancing to ensure that the 

group delay in the air path exactly equals that of the fiber for a given central wavelength. 

This ensures that the central wavelength in the interference pattern is within the viewable 

bandwidth of the OSA.   

 

The main problem in implementing a Michelson interferometer is that the arms of 

the coupler cannot be balanced exactly and as a result the effect of the extra set of 

reflections produced at the coupler facets cannot be removed.    

One method of canceling out the extra set of fringes produced at the facets of the 

coupler arms is by having a relatively long difference between the coupler arms as shown 

in Fig. 3-12:   
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Fig. 3-12: Fringe cancellation technique for a Michelson interferometer 
 

This fringe cancellation technique, depicted in Fig. 3-12, dramatically reduces the 

period of the fringes produced by the extra set of reflections from the coupler facets to a 

level in which they are smaller than the resolution of the OSA. As a result they become 

low-pass filtered by the OSA and do not show up in the plot of the interference. This 

technique, however, requires compensation of the added dispersion due to the optical 

path difference between the coupler arms. To do this, however, requires knowledge of the 

exact difference in length between the two arms of the coupler and the exact dispersion 

parameter curve for the arms of the coupler. Both of which are generally not easy to 

determine accurately. Also of note is that this technique requires a much longer air path 

which introduces more noise into the measurement due air path disturbances.  

As a result of the difficulties inherent in the fringe cancellation technique I will 

introduce a new method (which is a subset of balanced spectral interferometry) for the 

measurement of dispersion. This new method, known as Single Arm Interferometry, will 

not require the cancellation of any extra fringes as was the case for the Michelson. In the 

next section I compare the performance of Single Arm Interferometry to the conventional 

techniques in order to show how it is a natural progression in the development of 

dispersion measurement technology. The performance of Single Arm Interferometry is 
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introduced before the details of the technique are described in order entice the reader 

study the technical/theoretical discussion in chapter 4.      

3.4 Comparison of Dispersion Measurement Techniques  

 

There have been several techniques developed for the measurement of chromatic 

dispersion in fiber. Especially important are those developed for the measurement of 

short lengths of fiber [16, 47]. One reason that short length characterization techniques 

are important stems from recent developments in the design and fabrication of specialty 

fiber.  

Specialty fiber such as Twin Hole Fiber (THF) [48] and Photonic Crystal Fiber 

(PCF) [29] have made short length fiber characterization desirable due to their high cost. 

Because of this it is not economical to use TOF and MPS techniques to characterize these 

types of fiber. Another impetus for short length characterization comes from the fact that 

in many specialty fibers the geometry is often non-uniform along its length. As a result of 

this non-uniformity the dispersion in these fibers varies with position. Thus measurement 

of the dispersion in a long length of this fiber will be different than that measured in a 

section of the same fiber.   

In the last few sections several dispersion measurement techniques have been 

discussed and it has been shown that it is desirable to seek a short length characterization 

scheme. The techniques discussed for short length dispersion characterization were 

temporal and spectral interferometry. Temporal interferometry and unbalanced general 

spectral interferometry are both capable of characterizing short length fiber, however, 

since they obtain the dispersion parameter indirectly via second order differentiation of 

the phase term they are not as accurate as balanced spectral interferometry which directly 
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measures the dispersion parameter. As a result the technique of choice for dispersion 

measurement is balanced spectral interferometry since it will provide the most accurate 

measurements. As a result the new technique will employ balanced spectral 

interferometry.  

The two important parameters in comparing dispersion measurement techniques 

is the minimum device length that each is capable of characterizing and the precision to 

which the characterization is achieved. It is generally desirable to characterize as short a 

fiber as possible with as high a precision as possible.  It is also desirable to perform the 

measurement in the simplest way possible. A summary of the length requirements and the 

precision of the various dispersion measurement techniques is summarized in Table 3-1:  

 

Table 3-1: Summary of the various dispersion measurement techniques and their precision 
 

Technique 

Measures 

Short 

Fiber? 

Precision 

(Shortest length) 
Reference Comments 

Time of Flight 

(Film laser pulse) 
No 1 ps nm

-1
 (7.8 m) 40 -Need km’s of fiber 

Modulation 

Phase Shift 

 

No 

0.1 ps nm-1 (1.2 km) [19] 

0.07 ps nm
-1

 (Agilent 

86038B ) [20] 

19, 20, 22 

-Need 10’s of meters of fiber 

-System is expensive esp. RF 

components 

Temporal 

Interferometry 

 

Yes <1 m 

0.01 ps nm
-1

 (1 m) [16], 

0.0015 ps nm
-1

 (0.814m) 

[49] 

 

16, 49 

-Noise due to translation of 

mirror: 

-Stepping accuracy, drift in 

position, vibration 

-Less accurate, Indirect 

measure of D 

Dual Arm 

Spectral 

Interferometry 

(Balanced) 

Yes <1 m 

0.00007 ps nm
-1

  

(1 m) 

 

16 

-No moving parts  less noise 

-More accurate, directly 

measures D 

-Technique of choice 

Single Arm 

Interferometry 

(Balanced 

Spectral 

Interferometry) 

 

Yes <0.5 m 0.0001 ps nm
-1

 (0.395 m) This work 

-Subset of Balanced SI but 

simpler 

-Details in the next chapter 

 

*Note that in calculating the resolution of the Single Arm Interferometry technique the standard deviation of the 

measurement for single mode fiber (0.28 ps/nm-km) was multiplied by the length of SMF used (0.000395 km).   
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In the summary given in Table 3-1 it is evident that the order of magnitude for the 

measurement in dual arm spectral interferometry [16] is the same as the order of 

magnitude reported for Single arm Interferometry. The technique used in single arm 

interferometry, however, is significantly simpler as will be shown in the next chapter. 

The next chapter introduces the theory and implementation of Single Arm Interferometry 

and outlines the parameters affecting performance.  
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Chapter 4: Theory of Single Arm Interferometry  
 

A Single Arm Interferometer (SAI) can be produced by folding the two arms of a 

Michelson interferometer together into a common path (as in a common path 

interferometer) and placing a mirror behind the test fiber. This configuration was 

designed to eliminate the calibration step required by dual arm interferometers in which 

the coupler arms are made to be disproportionate in length to eliminate the effect of the 

extra reflections from the coupler-test fiber/coupler-air path facets. Since calibration is 

not required this technique is also more accurate than a dual arm interferometer. 

4.1 A New Concept 

 

This chapter introduces a balanced Single-Arm Interferometer (SAI) for the direct 

measurement of dispersion in short fibers. A balanced SAI is depicted in Fig. 4-1. This 

configuration is not only much simpler than a dual arm interferometer but it also 

eliminates the need for system calibration (assuming the dispersion introduced by the 

collimating lens is negligible and the air path is stable). Its simpler construction also 

makes it less susceptible to polarization and phase instabilities.  
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Fig. 4-1: Single-arm interferometer where three waves interfere; Uo, U1 and U3. 

 

The SAI is a balanced interferometer since the group delay in the fiber is the same 

as the group delay in the air path. It will be shown mathematically that this balancing of 

the group delay in each path allows the dispersion parameter to be measured directly 

from the interference pattern. The conceptual difference between SAI and Dual Arm 

interferometers is that, in SAI, the interference pattern is produced by three waves: two 

from the reflections at the facets of the test fiber and one from a mirror placed behind it 

(as shown by Uo, U1, and U2 in Fig. 4-1). The beating between the interference fringes 

produced by the test fiber and those by the air path generates an envelope which is 

equivalent to the interference pattern produced by two waves (U1 and U2 in Fig. 4-1) in a 

dual-arm interferometer.  

From the phase information in this envelope the dispersion parameter can be 

extracted. Both dual and single arm balanced interferometers have in common this ability 

to directly measure the dispersion parameter from the interference pattern.  

The SAI configuration appears similar to common path interferometers, often 

used for depth imaging as in Common-Path Optical Coherence Tomography (CP-OCT) 
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[50, 51]. The SAI, however, is fundamentally different from CP-OCT since it utilizes 3 

reflections, and extracts the dispersion parameter directly from the envelope of the 

interference pattern. The main difference between common path interferometers and 

single arm interferometers is the fact that there is a path balancing of the group delay in 

the fiber path and the air path. The differences between the Michelson Interferometer, 

CP-OCT and balanced Single Arm Interferometry are outlined in Table 4-1:  

 

Table 4-1: Differences & Similarities between the Michelson Interferometer, CP-OCT and the Single 

Arm Interferometer 

 Balanced 

Michelson 

Interferometer 

CP-OCT 

(Common path) 

Balanced SAI 

# of interfering 

waves 

2 2 3 

# of longitudinally 

separate paths 

2 1 1 

Path balancing yes no yes 

Dispersion 

information 

entire interferogram n/a envelope of 

interferogram 

Dispersion 

parameter measured 

directly n/a directly 

Measures dispersion 

parameter 

optical path length 

difference 

dispersion 

parameter 

 

In the next section, we will briefly present the theoretical representation of the 

interference pattern, the phase between the adjacent peaks/troughs of the envelope, and 

its relationship to the dispersion.  

4.2 Mathematical Description 

4.2.1.1 Equal Amplitude Case 

 

Dispersion measurements can be made using a single-arm interferometer by extracting 

the second derivative of the effective index with respect to wavelength from the envelope 

of the interference pattern generated by three waves Uo, U1 and U2 depicted in Fig. 4-2:  
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Fig. 4-2: Interference when reflections from the facets and mirror have equal amplitudes 

 

 

The extra reflection from the source fiber is eliminated using angle polished fiber 

as shown in Fig. 4-2. Note that this method is insensitive to the loss introduced by the 

angle polished connector since the dispersion information is contained within the phase 

of the three reflected waves. The optical path length of the air path is made to cancel out 

the strong linear effective group index term of the test fiber at a central wavelength, o. 

The amplitudes of Uo and U1 are assumed to be equal to the magnitude of the reflection at 

the fiber end facets. The amplitude of U2 depends on the amount of light coupled back to 

the fiber. This coupling efficiency can be adjusted by varying the alignment of the mirror 

such that U2 has the same amplitude as Uo and U1. In this simplified presentation:  
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        Eq. 4-1 

 

In Eq. 4-1, Lf and Lair are the lengths of the test fiber and the air path, respectively. 

β and ko are the propagation constant of the fundamental mode in the fiber and the 

propagation constant in free space. The interference pattern is produced by the 

interference of the three reflections is given by Eq. 4-2: 

 

Lf Lair 

U0      U1           U2 
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Eq. 4-2 

 

Eq. 4-2 contains two fast terms, with a phase )(1 airof LkL    and 

)(22 airof LkL   . Since 1  is slower than 2  it will amplitude modulate the faster 

term. As a result the period of the ‘carrier’ will be that of the slowest of the fast terms, 

1 carrier . This carrier is then itself amplitude modulated by the slower term 

)( airofenvelope LkL   to produce the ‘envelope’ of the interference pattern. This 

envelope is equivalent to the interference pattern produced by Michelson interferometer 

[16] and it can be written as: 

 

       )cos(45
2

envelopeoU      Eq. 4-3 

 

The calculated interference pattern generated by the setup for a 39.5 cm SMF28
TM

 

test fiber is shown in Fig. 4-3. It depicts the envelope function (highlighted) which is a 

good approximation of the envelope of the actual envelope of the carrier.  
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Fig. 4-3: Calculated 3 wave interference pattern and envelope for a 39.5 cm piece of SMF28

TM
  

 

Applying a Taylor expansion to the phase of the slow envelope and replacing  

with  effn2 , where neff is the effective index of the fiber, gives the phase relation in Eq. 

4-4: 
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 Eq. 4-4 

 

The first term in Eq. 4-4 (in the square brackets) disappears when Lair is adjusted 

to balance out the group delay of the test fiber at λo, the balanced wavelength. Taking the 

difference between the phases at two separate wavelengths; 1 and 2 results in [16]: 

 

λo 

λ4 

λ3 λ1 
λ2 
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Eq. 4-5 

 

Note that m is the number of fringes between the two wavelengths. If this phase 

difference is taken using a different pair of peaks/troughs (i.e. λ3 & λ4) the result is a 

system of equations in which 
o

dnd eff 
22 and 

o

dnd eff 
33 can be solved directly [16]. Since 

the troughs in the interference pattern are more sharply defined it is more accurate to 

choose the wavelength locations of the troughs of the envelope as the wavelengths used 

in Eq. 4-5.  

Note that, if we ignore the third-order dispersion, then only two wavelengths (e.g., 

 and ) are required to calculate the second-order dispersion. This, however, would be 

less accurate. The dispersion parameter D can then be found as follows: 
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)(      Eq. 4-6  

 

The next section presents a more general analysis of the interference pattern and 

details the effect of having variable reflection magnitudes from each of the facets. It will 

show how the variation in the magnitude of the reflections has no effect on the phase 

information in the envelope and as such the simplified analysis presented here is 

generally applicable.   
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4.2.1.2 Unequal Amplitude Cases 

 

 

To prove that this method is insensitive to the loss introduced by the angle polished 

connector since the dispersion information is contained within the phases of the three 

reflected waves we will now show the effect that is obtained if the reflections do not have 

equal magnitudes. The interference pattern produced by three reflections with unequal 

amplitudes is not as simple as presented in the previous section. Here we show that 

despite this fact the previous results still hold since the locations of the troughs of the 

envelope, which are used to obtain the dispersion information, remain the same even 

though the fringe contrast varies.  

In general the reflections from the facet and the mirror, shown in Fig. 4-2, do not 

have the same magnitude and we express the magnitudes of the reflections in terms of the 

first reflection in the following way.  
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        Eq. 4-7 

In Eq. 4-7 Lf and Lair are the lengths of the test fiber and the air path, respectively. 

β and ko are the propagation constant of the fundamental mode in the fiber and the 

propagation constant in free space. ‘a’ is the fraction of the amplitude reflected from the 

second facet in terms of the first and ‘b’ is the fraction of the amplitude reflected from the 

mirror in terms of the fraction reflected from the first facet. The interference pattern of 

the spectral interferogram can be expressed as:   
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Eq. 4-8 
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The expression in Eq. 4-8 can be treated as a fast-varying “carrier” (with respect 

to frequency or wavelength) modified by an upper and a lower slow-varying envelope, as 

shown in Fig. 4-3, which depicts the simulated spectral interferogram generated by the 3-

wave SAI with a 39.5-cm SMF28 fiber as the test fiber. Upon closer examination (Fig. 4-

3, lower right), the “carrier” is not a pure sinusoidal function, because there are three fast-

varying phases in Eq. 4-8, 2(Lf + koLair), (Lf + koLair), and 2koLair, all of which vary 

much faster than the phase of the envelope (envelope), which equals Lf  – koLair.  When  

is large (>0.5), it can be shown that the upper envelope is approximated by  

      )cos(42)1(21 222

envelopeo abbabaU     Eq. 4-9 

 

It will now be shown that although the magnitude of the interference pattern is not 

the same as the envelope for cases in which 1b , the peak and trough locations of the 

two match exactly. As a result the phase information of the interferogram is preserved 

and the dispersion information can be extracted from the interferogram. Note that a = b=1 

is a special case of this more general analysis and was presented in the previous section. 

Several cases will be shown for the variation in the magnitudes of the reflections from 

each of the facets. The Matlab code used to generate these interference patterns is 

presented in Appendix A.1.  

The first few cases will be shown to determine the effect of the variation of a 

while keeping b constant. Figs. 4-4 to 4-6 show that the variation of a does not change 

the interference pattern and the envelope in Eq. 4-3 still matches the upper peaks 

interference pattern produced using Eq. 4-2. In the figures below the envelope function as 

determined by Eq. 4-9 is plotted along with the fringe pattern to show that it is a good 
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approximation of the actual upper envelope of the carrier and that the locations of the 

peaks and troughs are the same.  

 
Fig. 4-4: Simulated interference pattern produced by the setup in Fig. 4-1 for a 30-cm-long SMF28

TM
 

test fiber, with a =0.9, b =1. The parameters used for the SMF28
TM

 is published in [Appendix B]. The 

envelope calculated by Eq. 4-9 is superimposed on the fringe pattern in a thick line, which is a close 

approximation of the upper envelope.  

 
Fig. 4-5: Simulated interference pattern produced by the setup in Fig. 4-1 for a 30-cm-long SMF28

TM
 

test fiber, with a =0.4, b =1. The parameters used for the SMF28
TM

 is published in Appendix B. The 

envelope calculated by Eq. 4-9 is superimposed on the fringe pattern in a thick line, which is a close 

approximation of the upper envelope.  

 



Chapter 4: Theory of Single Arm Interferometry  www.inometrix.com 42  

 

 
Fig.4-6: Simulated interference pattern produced by the setup in Fig. 4-1 for a 30-cm-long SMF28

TM
 

test fiber, with a =0.1, b =1. The parameters used for the SMF28
TM

 is published in [Appendix B]. The 

envelope calculated by Eq. 4-9 is superimposed on the fringe pattern in a thick line, which is a close 

approximation of the upper envelope.  

 

 

The next few cases will show the effect of a variation of b while keeping a 

constant. Figs. 4-7 to 4-9 show that the variation of b does change the magnitude of the 

interference pattern and the magnitude of the envelope in Eq. 4-9 does not match the 

upper peaks of the interference pattern produced using Eq. 4-8 but that the phases of both 

equations still match. Since the dispersion information is contained within the phase of 

the interference pattern it can still be used as in section 4.3.1 to determine the dispersion.  
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Fig. 4-7: Simulated interference pattern produced by the setup in Fig. 4-1 for a 30-cm-long SMF28
TM

 

test fiber, with a =1, b =0.9. The parameters used for the SMF28
TM

 is published in [Appendix B]. The 

envelope calculated by Eq. 4-9 is superimposed on the fringe pattern in a thick line, which is a close 

approximation of the upper envelope.  

 

 

Fig. 4-8: Simulated interference pattern produced by the setup in Fig. 4-1 for a 30-cm-long SMF28
TM

 

test fiber, with a =1, b =0.4. The parameters used for the SMF28
TM

 is published in [Appendix B]. The 

envelope calculated by Eq. 4-9 is superimposed on the fringe pattern in a thick line, which is a close 

approximation of the upper envelope.  
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Fig. 4-9: Simulated interference pattern produced by the setup in Fig. 4-1 for a 30-cm-long SMF28

TM
 

test fiber, with a =1, b =0.1. The parameters used for the SMF28
TM

 is published in [Appendix B]. The 

envelope calculated by Eq. 4-9 is superimposed on the fringe pattern in a thick line, which is a close 

approximation of the upper envelope.  

 

  

Since the phase of the upper envelope, φenvelope (and therefore the dispersion 

information) is unaffected by the magnitude of the reflections from the facets and the 

mirror, the method for determining the dispersion parameter as presented in Eqs. 4-4 to 4-

6 is valid even in the general case. The dispersion parameter, therefore, can always be 

obtained from an SAI.  

As mentioned earlier, the main difference between the fringes produced in this 

setup and those produced by dual arm interferometers is the presence of a fast carrier (Eq. 

4-8) slowly modulated by the desired envelope. The presence of this carrier sets extra 

operational constraints that will be discussed in the next section.  
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4.3 System Parameters 

 

There are four factors of interest with regard to the dispersion measurement system. 

These factors are important since they will determine the quality and range of the output 

of the dispersion measurements. The first factor of interest is the wavelength resolution of 

the measurement, the second is the minimum required bandwidth of the source, the third 

is the measurable bandwidth of the dispersion curve and the fourth is the test fiber length. 

The sections that follow discuss how each of these factors affect the output of the 

dispersion measurement.    

4.3.1 Wavelength Resolution of the Dispersion Measurement 

 

The wavelength resolution of the points in the plot of the dispersion parameter is 

determined by the minimum step size of the translation stage. With smaller step 

increments in the translation stage there are smaller step increments in the plot of the 

dispersion parameter vs. wavelength. This is because variation of the air path changes the 

wavelength where the air path and test fiber are balanced and produces a new 

interferogram from which the dispersion parameter can be determined. Examination of 

Eq. 4-4 shows that the first term can be removed if the group delay in the air path is equal 

to that in the fiber path for the central wavelength, o (central wavelength at which the 

group delay in fiber and air paths are balanced). The relationship between the air path 

length and the fiber length at the wavelength o is given by Eq. 4-10:  
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Taking the derivative of Lair with respect to o and using the definition given by 

Eq. 4-6, we obtain: 
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Therefore the change of o with respect to the change of Lair can be written as 
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Thus, the relationship between a change in the central (balanced) wavelength and 

the change in the air path length is given by:  
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airo
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         Eq. 4-13 

 

The minimum amount by which we can change the air path sets the minimum 

increment of the central wavelength in the interferogram. This amount must be several 

times smaller than the bandwidth of the source. Thus the minimum step size of the air 

path sets the wavelength resolution of the measured dispersion curve. Note the 

wavelength resolution is also inversely proportional to the dispersion-length product of 

the test fiber.  

I will now show the dependence of the wavelength resolution on the dispersion 

length product. As a numerical example, for a step size of 0.1m, assuming a 50-cm-long 

SMF28
TM

 test fiber, the wavelength resolution is 0.1nm, which is sufficient for most 

applications. As a graphical example the wavelength resolution is plotted against the 

dispersion-length product of standard SMF28
TM

 fiber.  
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Fig. 4-10: Dependence of the wavelength resolution on the dispersion-length product. Note we assume 

the values λo = 1550nm and Lair = 5μm and Bsource = 130nm. 

 

4.3.2 Minimum Required Source Bandwidth 

 

A minimum number of envelope fringes are required for accurate measurements of 

dispersion. As long as the balanced wavelength, 0, and four other wavelengths 

corresponding to the peaks (or troughs) of the envelope fringes are captured within the 

source bandwidth, Bsource, (Fig. 4-11), it is sufficient to determine dispersion D(0). It is 

found in practice that more accurate measurements require selecting two peaks (or 

troughs) on either side of 0, as indicated by Bmin on Fig. 4-11.  
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Fig. 4-11: Minimum required source bandwidth and the locations of the troughs 

 

 

For a given test fiber, the dispersion-length product is fixed. Therefore, the only 

factor that limits the number of envelope fringes is the source bandwidth, Bsource. The 

longer the fiber, or the larger the dispersion, the more closely spaced the envelope 

fringes, and hence the smaller the required bandwidth. In order to determine Bmin 

quantitatively, we need to determine the maximum value for the wavelength spacing 

(), as shown in Fig. 4-11. From Eq. 4-4, ignoring the 3
rd

-order term, we can obtain 

the envelope phase difference |envelope(envelope , which has an upper bound of 

since the first trough occurs at :    
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Applying the definition of dispersion in Eq. 4-6, we can therefore find the upper 

bound of the wavelength spacing (): 
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       Eq. 4-15 

 

Next, we examine the wavelength spacing between and . From 4-5, ignoring 

the 3
rd

-order term and applying Eq. 4-6 gives, 
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Combining Eqs. 4-15 and 4-16, we get the upper bound for the wavelength spacing 

: 
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The minimum required source bandwidth Bmin should be not less than the upper bound of 

2(), therefore, 

   
fcDL

B 0
min 22


       Eq. 4-18 

 

It is clear that the dispersion-length product of the test fiber also affects the 

minimum required bandwidth. Using a similar numerical example, assuming a 50-cm-

long SMF test fiber and 1.55μm as the balanced wavelength, the minimum required 

bandwidth is 85 nm. As a graphical example the minimum bandwidth required is plotted 

against the dispersion-length product for a standard single mode fiber and the values 

assumed for the calculation are Note we assume the values λo = 1550nm and dLair = 

5μm and Bsource = 130nm. 

.  
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Fig. 4-12: Minimum bandwidth required as a function of the dispersion length product. Note we 

assume the values λo = 1550nm and Lair = 5μm and Bsource = 130nm. 

 

 

4.3.3 Measurable bandwidth of the dispersion curve Bmea 

 

Since each spectral interferogram produces one dispersion value at the balanced 

wavelength, , to obtain dispersion versus wavelength, a number of interferograms are 

recorded at various balanced wavelengths by setting the appropriate air path lengths. 

Since each interferogram should be taken over a bandwidth of at least Bmin, from Fig. 4-

11 one can see that the measurable bandwidth of the dispersion curve is the difference 

between the available source bandwidth Bsource and the minimum required bandwidth 

Bmin, that is, 
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Alternatively, if we do not require two of the troughs to be on each side of , 

then the measurable bandwidth Bmea can be larger. In order to accurately determine , 

the central fringe (from 1 to 1 in Fig. 4-11) is required to be entirely visible within the 

measured spectral range. Therefore, 

    
f

sourcesourcemea
cDL
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01 22
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         Eq. 4-20 

 

Equation 4-19 or 4-20 gives the lower bound for the measurable bandwidth, 

which assumes the widest possible central fringe. In practice, since envelope () cannot be 

controlled, the width of the central fringe can be anywhere between zero and twice the 

limit of Eq. 4-20. Therefore, Bmea can be as large as Bsource in certain cases. 

Examination of Eq. 4-19 or 4-20 shows that increasing the dispersion-length 

product of the test fiber increases Bmea. Note that for a given measurement system, Bsource 

is fixed, so the only parameter that can be used to extend Bmea is Lf. The dispersion length 

product is, in fact, the main independent variable in determining the system parameters. 

As a graphical example the minimum measurable bandwidth is plotted against the 

dispersion-length product for a standard single mode fiber.  
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Fig. 4-13: The dependence of the measurable bandwidth (Bmea), on the DLf product. Note we assume 

the values λo = 1550nm and Lair = 5μm and Bsource = 130nm. 

 
 

The dispersion length-product has been shown to be the main independent variable in 

determining the measurable bandwidth and the minimum bandwidth. But the range of 

this parameter is itself affected by the source used. The bandwidth of the source 

determines the minimum fiber length that can be characterized using this technique and 

the minimum wavelength step of the source leads to a maximum characterizable fiber 

length. The next section discusses how the source bandwidth and minimum wavelength 

step size affect the range of fiber lengths that can be measured using the SAI technique. 
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4.3.4 Minimum Fiber Length 

 

The bandwidth of the source determines the minimum fiber length that can be 

characterized using SAI. A smaller fiber length produces a wider spectral interferogram 

as determined by Eq. 4-18. Thus in order for a certain fiber length to be characterizable 

using SAI the interferogram produced must fit inside the source bandwidth. Therefore the 

requirement is that,  

    sourceBB min           Eq. 4-21 

Using Eq. 4-18, we have: 

    
2

2
8

source

o
f
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
           Eq. 4-22 

 

Note that for a longer fiber there will be a greater measurement bandwidth 

(according to Eq. 4-19 or 4-20) and a higher wavelength resolution (Eq. 4-13). As a 

numerical example, for a source bandwidth of 130nm, the minimum length for a SMF28 

fiber is 0.23m. The maximum fiber length is plotted as a function of the source 

bandwidth in Fig. 4-14.  
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Fig. 4-14: Minimum fiber length vs. source bandwidth. Note λo = 1550 and D = 18 ps/nm-km. 
 

4.3.5 Maximum Fiber Length 

 

The SAI method uses the slow-varying envelope function to obtain dispersion. Though 

the “carrier” fringes are not of interest, they still need to be resolved during measurement 

otherwise the envelope shape cannot be preserved. The carrier fringe spacing is directly 

affected by the length of the fiber under test, Lf. A longer fiber will lead to narrower 

carrier fringes.  

The minimum step size of the tunable laser, however, sets a limit on the minimum 

carrier fringe period that can be detected due to aliasing. Since a longer fiber length has a 

higher frequency carrier this minimum detectable fringe period results in a limit on the 

maximum fiber length. The carrier fringe period is the wavelength difference that causes 
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the fast varying phase to shift by 2. The Fast phase term in Eq. 4-2 for a balanced air 

path,   fogair LNL  , can be written as: 

 

     )( fogofeffo LNkLnk        Eq. 4-23 

 

Using a first order approximation of neff and Ng 

 

      nnN effog       Eq. 4-24 

 

Where n is the core index, the phase term is written as 
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The fringe period, , corresponds to a 2  phase shift 
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Hence,  
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In order to detect one fringe accurately, we apply the Nyquist criterion that at 

least 2 sample points have to be included in one fringe. This sets the following limit over 

the fiber length: 
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     Eq. 4-28 

Where Δ is the minimum wavelength step size of the tunable laser.  

If the fiber length limit is exceeded aliasing occurs. The maximum fiber length for 

aliasing to be avoided is plotted as a function of step size in Fig. 4-15.    
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Fig. 4-15: The maximum measurable fiber length, Lf  as a function of the step size of the tunable 

laser. The detector resolution is 1 picometer, o=1550 nm and n = 1.44. 

 

 

The preceding analysis assumes that it is necessary to avoid aliasing to ensure that 

all of the peaks of the interferogram are sampled in order to accurately plot the envelope 

of the interferogram. It is this assumption that leads to the upper limit in the fiber length 

given in Eq. 4-28. This upper limit however can be exceeded by dividing the 

interferogram into small window sections and selecting a single point in each window to 

plot the envelope. The theory behind this technique, called wavelength windowing, will 

be explained in detail in the next section.  
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4.4 The Effect of Wavelength Windowing 

 

The problem with trying to measure a fiber longer than Eq. 4-28 allows is that the period 

of the carrier gets shorter with increasing fiber length. According to Nyquist theory the 

sampling period, determined by the average step size of the tunable laser, must be at least 

2 times smaller than the period of the carrier in order to avoid aliasing. This ensures that 

all the sampled peaks of the carrier match the true envelope of the interference pattern.  

Aliasing is a phenomenon that prevents every peak of the carrier from being 

sampled but it does not mean that some of the peaks in a given wavelength window range 

will not be sampled. We can therefore divide the interferogram into small window 

sections, as shown in Fig. 4-16, each containing many sampled points. Thus when 

aliasing does occur there will be a certain probability that at least one of the sampling 

points will land on a peak of the interferogram within each wavelength window 

(assuming a slow variation in the envelope within that window). Therefore, the envelope 

of the interferogram can be plotted under conditions where aliasing does occur by taking 

the maximum in each wavelength window and connecting them together, as shown in 

Fig. 4-16.   
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Fig. 4-16: Tracing the envelope of the interferogram by wavelength windowing.  

 

Detailed statistical analysis (developed in the next section) shows how the 

probability that at least one of the peaks will be sampled within a wavelength window is 

determined. This technique shows that the upper limit in Eq. 4-28 can be exceeded by 

many folds by wavelength windowing.  

4.5 Model Development 

 

 

This technique uses a tunable laser system to sample the peaks of an interferogram. A 

real world tunable laser system, however, does not step the wavelength with equal step 

sizes but has a certain standard deviation in its step size. In order to produce an accurate 

modeling of a real world process this variation in the step size of the tunable laser must 

be taken into account by the model. The tunable laser system used in the experiments was 

      Wavelength (a.u.) 
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the Agilent 8164A which has an average step size of 1 pm and a standard deviation of 

0.17 pm as determined from the histogram and the Gaussian PDF in Fig. 4-17:  

 

Fig. 4-17: Measured Probability density function (histogram) and a Gaussian fit for the step size of 

the Agilent 8164A tunable laser. 

 

In order for the model to accurately determine the probability of a sampled point 

matching at least one peak of the carrier wave within a certain wavelength window, 

certain parameters must be determined. The model that will be developed requires 

knowledge of the fiber length, the width of wavelength window, the average step size of 

the tunable laser, the standard deviation of this step size and the tolerance in detecting the 

peak as a percentage of the carrier period.     

  

2σ 
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In this model we will designate the fiber length as Lf, the wavelength window 

within which we wish to detect a peak as W, the average step size of the tunable laser as 

μ, the standard deviation of the step size of the tunable laser as σ and the tolerance in 

detecting the peak as a percentage of the carrier period as ε. If we call λo the separation 

between the first carrier peak and the maximum sampling probability density of the first 

step, as shown in Fig. 4-18, then the wavelength location of the next maximum sampling 

probability occurs at λo + μ and the following one occurs at λo + 2μ and so on. Fig. 4-18 

illustrates the probability density functions along with the carrier functions.  

 

 
 

Fig. 4-18: Model showing the probability density functions for the step size and the carrier for 

determining the probability of hitting a peak in a given wavelength window. The probability density 

functions for the step size and the carrier fringes are shown. Note that even with aliasing the tunable 

laser has a chance of hitting the peaks of the carrier at least once for a given wavelength window 

since the period of the peaks of the carrier is different than the period of the wavelength steps of the 

tunable laser. 
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Fig. 4-18 also illustrates the fact that even with aliasing, where all the peaks of the 

interferogram are not sampled, there is still a chance that at least one of the peaks of the 

interferogram will be sampled for a given wavelength window since the period of the 

peaks of the carrier is different than the period of the wavelength steps of the tunable 

laser.  Thus, for any given window size there will be a number of peaks of the carrier.  

If we assume the location of the first carrier peak to be at λ1, as shown in Fig. 4-

18, then the probability that this first peak is sampled by the first step of the tunable laser 

is given by:  
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Therefore the probability that the first peak is not sampled by the first step is: 
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   Eq. 4-30 

Here ε, shown in Fig. 4-18, is a fraction of the width of the carrier period and this 

measure translates into a tolerance in the measurement of the peak amplitude.  

If we let N be the number of steps of the tunable laser in a given window size then 

the probability of not sampling the first peak with any of the N steps is given by: 
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   Eq. 4-31 

 

 If we let M be the number of peaks of the carrier in a given window size then the 

probability of not sampling any of the M peaks with any of the N steps is given by:  
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  Eq. 4-32 

 

Where λm is the location of the m
th

 peak in the wavelength window and is given 

by m λ1 and Λ+ and Λ- are the normalized wavelength parameters given by:  
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Since the model assumes a fixed relationship between the first carrier peak and 

the maximum of the probability density function this probability should be averaged for 

λo varying over one carrier wave period. This gives the probability that no carrier peak is 

sampled in a given window for a random alignment between the carrier peaks and the 

maximum of the probability density function. The result is given as: 
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Thus the probability that at least one of the peaks is sampled for a given window size is 

determined as:  
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4.6 Simulation Results 

 

The calculated effective index and dispersion of SMF28
TM

 is used in the following 

sections to determine the probability that at least one peak is sampled as one of five 

parameters is varied. The parameters varied are the window size, the step size, the fiber 

length (which determines the peak spacing), and the tolerance (which determines the how 

close the sampled peak is to the actual carrier amplitude). The results are shown in the 

following five sections. The parameters held constant in these simulations are chosen to 

be the same as the experimental conditions that will be implemented in section 5.2 in the 

experiment on SMF28
TM

. The Matlab code used to perform these simulations is given in 

Appendix A.2.  

4.6.1 Probability vs. Window Size 

 

 

The probability that at least one peak is sampled in a given window size, W, is shown in 

Fig 4-19, as a function of the window size. The parameters held constant for this 

simulation are the fiber length (Lf = 39.5 cm), the average step size (μ = 1 pm) and the 

tolerance (ε = 0.02 x average carrier period). The probability is plotted for 3 different 

cases of the standard deviation in Fig. 4-19: σ = 0.05pm, which is as close to the σ = 0 

case (i.e. constant step size case) that we can get using the model since σ = 0 leads to a 

Λm+  = 1/0 (undefined) in Eq. 4-33. The other two cases plotted in Fig. 4-19 are σ = 

0.17pm, and σ = 1pm.   
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Fig. 4-19: Probability vs. window size. The parameters held constant for this simulation are the fiber 

length (Lf = 39.5 cm), the average step size (μ = 1 pm) and the tolerance (ε = 0.02 x average carrier 

period). The probability is plotted for 3 different cases of the standard deviation: σ = 0.05pm, σ = 

0.17pm, and σ = 1 pm  

 

 

Fig. 4-19 shows that for the given parameters a unity probability can be obtained for a 

window size of > 0.29nm.  The window size, however, is not the only parameter that 

affects the probability that the tunable laser step will sample the peak of the interferogram 

in a given window. The next section shows that the average step size of the tunable laser 

also affects this probability.  
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4.6.2 Probability vs. Average Step Size 

 

The probability that at least one peak is sampled in a given window size, W, is shown in 

Fig. 4-20 as a function of the average step size, μ, of the tunable laser. The parameters 

held constant for this simulation are the fiber length (Lf = 39.5cm), the window size (W = 

0.25 nm) and the tolerance (ε = 0.02 x average carrier period). The probability is plotted 

for 3 different cases of the standard deviation in Fig. 4-20: σ = 0.05pm, which is as close 

to the σ = 0 case (i.e. constant step size case) that we can get using the model since σ = 0 

leads to a Λm+  = 1/0 (undefined) in Eq. 4-33, σ = 0.17pm, and σ = 1pm.  

 

Fig. 4-20: Probability vs. Step Size.  The parameters held constant for this simulation are the fiber 

length (Lf = 39.5cm), the window size (W = 0.25 nm) and the tolerance (ε = 0.02 x average carrier 

period). The probability is plotted for 3 different cases of the standard deviation: σ =  0.05pm, σ = 

0.17pm and σ = 1 pm  
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Fig. 4-20 shows that for the given parameters there is a near unity probability for 

an average step size below 0.5 pm and that it decreases as the step size increases. The 

average step size of the tunable laser, however, is not the only parameter that affects the 

probability that the tunable laser step will sample the peak of the interferogram in a given 

window. The next section shows that the length of the test fiber also affects this 

probability. 

4.6.3 Probability vs. Fiber Length 

 

The probability that at least one peak is sampled in a given window size, W, is shown in 

Fig 4-21 as a function of the fiber length, Lf. The parameters held constant for this 

simulation are the average step size of the tunable laser (μ = 1 pm), the window size (W = 

0.25 nm) and the tolerance (ε = 0.02 x average carrier period). The probability is plotted 

for 3 different cases of the standard deviation in Fig. 4-21: σ = 0.05pm, which is as close 

to the σ = 0 case (i.e. constant step size case) that we can get using the model since σ = 0 

leads to a Λm+  = 1/0 (undefined) in Eq. 4-33, σ = 0.17 pm and σ = 1 pm.  
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Fig. 4-21: Probability that at least one peak is sampled in a given window vs. fiber length. The 

parameters held constant for this simulation are the average step size of the tunable laser (μ = 1 pm), 

the window size (W = 0.25 nm) and the tolerance (ε = 0.02 x average carrier period). The probability 

is plotted for 3 different cases of the standard deviation: σ = 0.05 pm, σ= 0.17 pm, and σ=1 pm.  

 

Fig. 4-21 shows some peculiar dips where the probability drops to zero for the 

cases where the standard deviation is small (σ = 0.05 pm and  σ = 0.17 pm). We can see 

that when the standard deviation is high (σ = 1pm) these dips disappear. We also notice 

from Fig. 4-21 that for higher standard deviation the probability curves drop more 

quickly to the asymptotic value. Thus a lower standard deviation in the step size of the 

tunable laser produces curves with higher initial probabilities, but large dips in the 

probability curve where the probability drops to zero. A higher standard deviation in the 

step size produces curves with lower initial probabilities but eliminates the dips where the 

probability drops to zero. It is therefore beneficial to have some amount of variation in 

the step size of the tunable laser in order to eliminate these dips in the probability.  
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These dips where the probability drops to zero can be explained by the fact that 

certain fiber lengths lead to a carrier spacing that is a multiple of the wavelength step size 

and as a result none of the peaks in a window get sampled. Fig. 4-22 shows the 

probability as a function of fiber length for σ = 0.05pm and for two different step sizes μ 

= 1.3pm (plotted in blue and μ = 1pm (plotted in green). Fig. 4-22 shows that the location 

of the dips are different for each case since the dips occur at different fiber lengths 

(different carrier spacing).  

The dips occur whenever the carrier spacing is a certain multiple of the step size 

of the tunable laser. This multiple is given in Eq. 4-36. 

     m

n
G

2


     Eq. 4-36 

  n and m are positive integers. Whenever the carrier period is a multiple of G there is a 

high probability that none of the peaks get sampled.  
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Fig. 4-22: Probability vs. Fiber length for the σ = 0.05pm case for a step size of  μ = 1 pm and for the 

step size of μ = 1.3 pm. The location of the dips in probability occur at different fiber lengths (carrier 

periods) for different step sizes. They occur when the carrier period is a certain multiple of the step 

size and there is a chance that none of the peaks within the window get sampled. The parameters 

held constant for this simulation are the window size (W = 0.25 nm), the tolerance (ε = 0.02 x average 

carrier period) and the standard deviation of the step size σ = 0.05 pm. 

 

 

The average carrier period is determined by taking the average of all the carrier 

period in the bandwidth as described by Eq. 4-37:  

    

Bandwidthfeff

p
Ln2

2
      Eq. 4-37 

  

This is easily calculated using the Matlab program written in Appendix A.2.5.  

 

As a numerical example Fig. 4-22 shows several dips where the probability drops to zero. 

In the case where μ = 1.3 pm in Fig. 4-22 when the fiber length is 0.05m the average 

carrier period is determined to be 13 pm which is 10 times the step size. Table 4-2 shows 

several other numerical examples using the dips in Fig. 4-22. 
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Table 4-2: The dips where the probability drops to zero in Fig. 4-22 occur when the carrier period is 

a multiple of 
mnG 2 the step size. 

Fiber length Step Size Carrier Period m n Multiple 

0.04 m 1.3 pm 20.8 pm 0 16 16 

0.0916 m 1.3 pm 9.1 pm 0 7 7 

0.139 m 1 pm 6 pm 0 6 6 

0.171 1.3 pm 4.878 pm 2 15 3.75 

0.3 m 1.3 pm 2.6 pm 0 2 2 

0.365 m 1.3 pm 2.285 pm 2 7 1.75 

0.3925 1 2.125 3 17 2.125 

0.425 m 1.3 pm 1.95 pm 1 3 1.5 

 

Note that a dip occurs whenever the period of step size approaches G times the 

carrier period (for the cases with low standard deviation). This is not illustrated in Fig. 4-

22 since it is impossible to get a high enough resolution so that the simulated points fall 

exactly on the fiber length where every dip occurs. This is also the reason that the dips in 

Fig. 4-22 do not fall completely to zero.  

We also notice that for the given parameters that we have held constant in this 

simulation the probability of sampling a peak asymptotically approaches a constant value 

as the length is increased.  We notice that this constant is the same, regardless of the 

standard deviation of the step size. The conclusion, therefore, is that this technique can be 

used to measure the dispersion of long lengths of fiber (assuming of course that a long 

enough air path can be produced by the experimental setup and that the period of the 

carrier peaks is still above the laser linewidth).  
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4.6.4 Probability vs. Tolerance 

 

 

The probability that at least one peak is sampled in a given window size is shown in Fig. 

4-23 as a function of the tolerance. The parameters held constant for this simulation are 

the average step size of the tunable laser (μ = 1 pm), the window size (W = 0.25 nm), and 

the fiber length Lf = 39.5 cm. The probability is plotted for 3 different cases of the 

standard deviation in Fig. 4-23: σ = 0.05pm, which is as close to the σ = 0 case (i.e. 

constant step size case) that we can get using the model since σ = 0 leads to a Λm+  = 1/0 

(undefined) in Eq. 4-33, σ = 0.17 pm and σ = 1 pm.  

 

 

Fig. 4-23: Probability vs. Tolerance. The parameters held constant for this simulation are the average 

step size of the tunable laser (μ = 1 pm), the window size (W = 0.25 nm) and the fiber length Lf = 39.5 

cm. The probability is plotted for 3 different cases of the standard deviation: σ= 0.05pm, σ = 0.17pm 

and σ = 1pm.  
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Fig. 4-23 shows that the probability of hitting a ‘peak’ increases as the definition 

of where the peak actually is becomes relaxed. As the tolerance is increased the degree to 

which the peaks of the envelope match the amplitude of the actual interference pattern is 

reduced. It can be seen from this figure that the minimum probability of hitting a peak is 

zero and that it approaches unity if the tolerance is 2.6% for the given parameters that are 

held constant. 

This chapter has developed the theory of single arm interferometry, discussed 

how it is implemented and how it can be explained via rigorous mathematical analysis of 

three wave interference.  The technical limits of the SAI have been discussed by showing 

the effects on the dispersion measurements of four factors of interest. The range of 

characterizable fiber lengths can be extended via a wavelength windowing technique in 

which the envelope is plotted by selecting a few points in a given bandwidth. The result 

of this range extension is that the ultimate limit on the test fiber length is the laser 

linewidth (which should be much smaller than the carrier fringe period) and the 

maximum air path length. The next chapter will describe the practical application of the 

theory that has been developed in this chapter.    
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Chapter 5: Experiments & Analysis 
 

 

In this chapter the results of experiments using Single Arm Interferometry are presented 

to substantiate the theory of single arm interferometry, introduced in the last chapter. An 

outline of the steps in the experimental process is first provided to give an overview of 

the experimental process. Then the challenges encountered during the setup of the Single 

arm interferometry experiments are described. Following these challenges is a description 

of the instruments used in the experiments and their specific limitations. The last three 

sections of this chapter outline the results of the experiments performed to characterize 

three different types of fiber: Single mode fiber (SMF28
TM

), Dispersion Compensating 

Fiber (DCF) and Twin Hole Fiber (THF).  

5.1 Experimental Process  

 

The experiments in this chapter were carried out to validate the theory presented in the 

previous chapter and to characterize the dispersion of a Twin Hole fiber for which the 

dispersion has never been published. The first step in the experiment is to set up the 

Single Arm Interferometer and to assemble the control and data acquisition hardware. 

The second step in the experiment is to test the technique by using it to measure the 

dispersion of fibers for which the dispersion curves are known or that can easily be 

measured using conventional techniques. To do this, the dispersion curves of Single 

Mode Fiber (SMF28
TM

) and Dispersion Compensating Fiber (DCF) were measured. 

After careful analysis of the results for the experiments on SMF28
TM

 and DCF the new 

technique was then used to measure the dispersion of a fiber that has never before been 
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characterized. The entire experimental process for this project is outlined in Fig. 5-1 

below.   

 

 

Fig. 5-1: Experimental process for the development and testing of the Single Arm Interferometer. 

The first step is to set up the apparatus as well as the control and data acquisition hardware and 

software. The second and third steps test the technique and the fourth step uses the verified 

technique to characterize a fiber with unknown dispersion. 

 

5.2 Experimental Challenges  

 

 

In order to compare Single Arm Interferometry to other dispersion measurement 

techniques the challenges of setting up such an interferometer must also be well 

understood. There were several challenges associated with the setup of the system and the 

implementation of the experiments.  

One challenge in the setup included alignment of the APC connector with the test 

fiber which was especially difficult for Twin-hole fiber since the fiber was different in 

size to SMF so core to core alignment was not easy. Using a bare fiber adapter and a fiber 
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to fiber connector helped but coupling was still a difficult task since the core of THF is 

slightly off centre (see Fig. 5-6) whereas the core of SMF28
TM

 is at the centre of the 

fiber.  Another challenge is to prevent the angle polished connector (APC) from being 

broken by being pushed too forcefully against the flat polished connector (FPC). One 

way to eliminate the possibility of this occurrence is to produce the APC with a locking 

pin to prevent a standard FPC from breaking it.    

 Another challenge in the setup was placing the test fiber at the right location in 

the bare fiber adapter so that light could be properly collimated by the collimating lens. 

Trial and error using an infrared card and a pinhole to collimate the beam helped in this 

regard.  

Another challenge was alignment of the mirror such that the beam could be 

reflected back exactly into the collimating lens and thus back to the detector with a 

magnitude on the same order as the reflections from the facets of the test fiber. Trial and 

error was used to achieve maximum fringe visibility.  

Air flow in the air path is an effect that leads to changes in the density and 

therefore the optical path length in the air path. To solve this problem the system was 

encased in a container to reduce air flow in the air path.  

Because of its simplicity the challenges presented in the set up of a single arm 

interferometry experiment are rather straightforward and it is for this reason that it will be 

very competitive as a dispersion measurement technique. This simplicity coupled with 

the advantage of high precision make the SAI a powerful method for characterizing the 

dispersion of short length fibers. The next section outlines the instruments and tools used 

in the setup of an SAI and their specific limitations. 
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5.3 Experimental Instrumentation & Specific Limits 

 

 
 

Fig. 5-2: Experimental Setup of a Single Arm Interferometer for dispersion characterization. The 

tunable laser source and detector used are the Agilent 8164A Lightwave Measurement System with a 

bandwidth of 130 nm centered around 1550 nm, and a minimum average wavelength step of 1 pm 

(standard deviation 0.17 pm). An angle-polished connector is used at the launch fiber to eliminate the 

reflection from this facet. The reflections from the collimation lens surfaces are suppressed by using 

an antireflection coated lens. The mirror tilt is adjusted to obtain maximum fringe visibility. The 

mirror translation is controlled manually, and the minimum step is approximately 5m. 

 

The experimental set up is shown in Fig. 5-2. The tunable laser source and detector used 

are plug-in modules of the Agilent 8164A Lightwave Measurement System. The source 

has a bandwidth of 130 nm centered around 1550 nm, and a minimum average 

wavelength step of 1 pm (standard deviation σ = 0.17 pm). The unit records the detector 

readings and the wavelength readings as the source wavelength is swept. The spectral 

interference pattern is then analyzed. The fibers are aligned by a standard connector or 

using a bare fiber adapter in cases where the fiber is not connectorized. An angle-

polished connector (APC) is used at the launch fiber as shown in Fig. 5-2 in order to 

eliminate the reflection from this facet. A locking mechanism can be used to prevent the 

APC from being broken by the FPC. The reflections from the collimation lens surfaces 
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are suppressed by using an antireflection coated lens. The dispersion of the lens is 

negligible. The mirror tilt is adjusted to obtain maximum fringe visibility. The mirror 

translation is controlled manually, and the minimum step is approximately 5m. 

In the following sections, we will apply the SAI technique to measure the 

dispersion of three different fibers: a standard SMF28
TM

 single mode fiber, a Dispersion 

Compensating Fiber (DCF) and a Twin-Hole Fiber (THF). In measuring the envelope of 

the spectral interferogram, the total scanning region is divided into 0.25-nm-wide 

wavelength windows, over which the envelope is considered constant. The peak value 

within each band is extracted to produce the spectral envelope as described in sections 

4.5.1 – 4.5.3.  

5.4 Experiments 

5.4.1 Single Mode Fiber  

 

The dispersion properties of SMF28
TM

 are well known and hence it was used to 

verify the theory of single arm interferometry. In this experiment we used a 39.5+0.1 cm 

piece of the SMF28
TM

 fiber in a SAI in order to characterize its dispersion. Fig. 5-3 

shows a plot of both the experimental dispersion parameter points and the simulated 

dispersion of SMF28
TM

. From this figure we can see that the slope of the measured 

dispersion points closely match the simulated dispersion curve. The simulated dispersion 

curve for SMF28
TM

 was calculated using the dispersion equation given in Appendix B:   
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Where λ0 = 1313 nm and So = 0.086 ps/nm-km and D(λ) is measured in ps/nm-km.  
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Fig. 5-3: Measured dispersion compared to published dispersion equation [Appendix B] for a 

39.5+0.1cm SMF28
TM

 fiber. The standard deviation of the measured dispersion is determined using a 

linear fit and calculating the standard deviation of the difference between the measured values and 

the linear fit. The simulation is calculated using the Matlab code in Appendix A.3.1 to be is 0.28 

ps/nm-km (corresponding to a relative error of 1.6%). When this standard deviation is multiplied by 

the length of the fiber, this translates into a standard deviation of 0.0001 ps/nm. 

The wavelength resolution of the measured dispersion curve, as determined by 

Eq. 4-13, is 2.4 nm. The measurable bandwidth according to Eq. 4-20 is 30nm, which is 

the bandwidth actually used, as shown in Fig. 5-3. The standard deviation of the 

measured dispersion is calculated by taking the difference between the measured points 

and a linear fit and then calculating the standard deviation from the difference. The 

standard deviation, as calculated using the Matlab code in Appendix A.3.1, is 0.28 ps/nm-

km (this corresponds to a relative error of 1.6%). When this standard deviation is 

multiplied by the length of the fiber, this translates into a standard deviation of 0.0001 

ps/nm. A comparison between the measured and simulated interference patterns for 

SMF28
TM

 is shown in Figs. 5-4 (a) and (b).  
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Fig. 5-4: (a) Measured upper envelope (experimental) fringe pattern. (b) Simulated interference 

pattern and upper envelope. The experimental and simulated conditions are: fiber length Lf = 0.395m 

effective group index at central wavelength = 1.472469, Lair = 1.472469Lf.  

 



Chapter 5: Experiments & Analysiswww.inometrix.com 80  

 

The simulated interference pattern is generated using Eq. 4-8 and the envelope of 

the interference pattern is generated using Eq. 4-9. The Matlab code used in the 

simulation is given in Appendix A.1. In the simulation a fiber length of 0.395 m is 

assumed in order to match the experimental conditions. The path length of the air path is 

determined via a calculation of the effective group index of the fiber was determined to 

be 1.472469 at the central wavelength, λo, via Eq. 5-2: 
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Note that a is the core size of the fiber and J and K are Bessel functions of the first and 

second kind. The locations of equality in Eq. 5-2 determine the values of κ(λ) and γ(λ) as 

well as a mode of the fiber. The first of these modes is called the fundamental mode of 

the fiber. The values of ncore(λ) and ncladding(λ) are the index of bulk glass with the 

composition of the core and cladding respectively. The effective group index as a 

function of wavelength in SMF28
TM

 fiber is determined using the simulation in Appendix 

A.1.2.   

In Fig 5-4 there are differences between the upper envelope of the experimental 

fringe pattern and the upper envelope of the simulated fringe pattern. These differences 

are in the contrast and amplitude of the experimental fringe pattern. The larger contrast in 

the experimental data is due to the fact that in the experiment the magnitude of the 

reflections from the facets of the fiber and the mirror were not equal. The aim of the 
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experiment was to simply maximize the fringe visibility so that the locations of the 

peaks/troughs of the envelope could be determined so that the dispersion could be 

calculated. The simulation has a different contrast since it assumes equal reflections from 

the fiber facets and the mirror. The analysis that shows how the differences in the 

reflections from the facets and the mirrors lead to variation in the fringe contrast was 

presented in chapter 4.3.1.2. The variable amplitude in the experimental fringe pattern is 

due to the fact that there is a background amplitude spectrum that has not been removed 

from the measurement.        

5.4.2 Dispersion Compensating Fiber 

 

As a second method of verification, we measured dispersion on a short piece of DCF, 

whose dispersion value is approximately one order of magnitude higher than that of 

SMF28
TM

, and has an opposite sign. We used a 15.5+0.1 cm piece of DCF fiber, and the 

measurement results are given in Fig. 5-5. To verify the accuracy of our measurement, 

we also measured dispersion on an identical 100+0.5m DCF using a commercial 

dispersion measurement system (Agilent 83427A), which employs the MPS technique. 

Again, our measured dispersion values are in good agreement with those measured by the 

commercial device, though the fiber length we used is almost 3-orders of magnitude 

smaller.  

The standard deviation of the measured dispersion is calculated by taking the 

difference between the measured points and a linear fit and then determining the standard 

deviation of the difference. The standard deviation of the measured data (as calculated 

using the Matlab code in Appendix A.3.2 ) is 0.99 ps/nm-km, which corresponds to a 
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relative error of 0.9%. When multiplied by the length of the fiber, this translates into a 

standard deviation of 0.00015 ps/nm.  
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Fig. 5-5: Measured dispersion parameter plot for DCF using the Agilent 83427A and Single Arm 

interferometry. The standard deviation of the measured data (as calculated using the Matlab code in 

Appendix A.3.2 - with reference to a linear fit) using the SAI is 0.99 ps/nm-km, which corresponds to 

a relative error of 0.9%. When multiplied by the length of the fiber, this translates into a standard 

deviation of 0.00015 ps/nm. 

 

Since DCF has negative dispersion values a procedure for determining the sign of 

the dispersion was developed. By examination of Eq. 4-13 repeated below for 

convenience  

    
DcL

dLd
f

airo

1
      Eq. 5-4 

We can see that if the sign of the dispersion is negative then the location of the 

central wavelength will decrease as the path length of the air path is increased. This is a 

quick method for determining the sign of the dispersion.  
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5.4.3 Twin Hole Fiber 

 

Twin Hole Fiber (THF) has been used in fiber poling to facilitate parametric generation 

in fibers [48, 52] or making fiber-based electro-optic switching devices [53].  In such 

nonlinear applications, dispersion of the fiber is an important parameter to be determined. 

The dispersion properties of THF, however, have never been reported. This is partly due 

to the lack of uniformity in the diameter of the THF along its length. The fiber has a 3-

μm-diameter core and a numerical aperture that is higher than that of SMF28TM.  The 

cross section of a typical THF is shown in Fig. 5-6:  

 

Fig. 5-6: Cross section of a typical Twin-Hole Fiber 

 

The core is Ge-doped silica, and has an index similar to that of SMF28
TM

. 

Therefore, we expect the dispersion of THF to be slightly lower than that of SMF28
TM

.  

Since we did not know the magnitude of the dispersion for THF we decided to choose the 

largest length of THF available to increase the chance that the minimum bandwidth 
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required for a measurement would fit in the available bandwidth of the tunable laser 

source. The largest length of THF available was 45+0.1 cm. This length of fiber is 

slightly longer than the length allowed by Eq. 4-28 but since we used the technique of 

wavelength windowing described in sections 4.5.1-4.5.3 the measurement of the envelope 

was still possible in this experiment.  

The measurement results from the experiment on THF are given in Fig. 5-7. The 

standard deviation of the measured dispersion is calculated by taking the difference 

between the measured points and a linear fit and then calculating the standard deviation 

from the difference. The standard deviation of the measured data, as calculated using the 

Matlab code in Appendix A.3.3, is 0.375 ps/nm-km (which corresponds to a relative error 

of 2.9%). When multiplied by the fiber length, this standard deviation translates into a 

precision of 0.00017 ps/nm. The slightly larger standard deviation compared to those for 

the SMF and DCF measurement is due to the higher loss in fiber coupling between the 

SMF and the THF, and hence the lower and more noisy signal level during the THF 

measurement.    
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Fig. 5-7: Measured dispersion for the 45+0.1cm Twin-Hole Fiber performed using Single Arm 

Interferometry. The standard deviation of the measured data (as calculated using the Matlab code in 

Appendix A.3.3 - with reference to the linear fit) is 0.375 ps/nm-km, which corresponds to a relative 

error of 2.9%. Multiplied by the fiber length, this translates into a standard deviation of 0.00017 

ps/nm. 

 

  

An important aspect of the previous three sections is the error associated with the 

measurement of each point in the dispersion parameter plots. The next section outlines 

the source and magnitude of the error associated with the measurement of the dispersion 

parameter.   
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5.5 Error Analysis 

 

It is important to understand the source and magnitude of the error in the measurement of 

the dispersion parameter in the previous experiments to gain an understanding of the 

precision and accuracy that can be attained with an SAI. There are several sources of 

error in the measurement of the dispersion parameter.  

Errors introduced by the environment in which the experiment takes place are the 

first types of errors in the experiment. These errors are not quantifiable so they were 

mitigated by encasing the system in a sealed container in which the temperature and 

density of the air was stabilized. Encasing the system in a sealed container mitigates the 

error that causes a variation in the optical path length of the air path due to air currents 

and the error that causes a variation in the length of the fiber due to temperature 

fluctuations in the air.  

There are three other quantifiable sources of error in the experiment. Instrument 

error in accurately measuring the wavelength of the tunable laser is the first, human error 

in measuring the lengths of the fiber used in the experiment is the second, and systematic 

error due to the wavelength windowing process (which puts an uncertainty with a 

magnitude of + one half the window size on the points in the envelope) is the third. 

Instrument error in the measurement of the wavelength is much smaller than the 

wavelength window used to plot the envelope and as a result, it can be ignored in 

comparison to the systematic error.  

Thus the major quantifiable contributions to the error in measuring the dispersion 

parameter are human error and systematic error. How these two quantities combine to 
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produce an overall error in the measurement of the dispersion parameter is now 

discussed.     

The dispersion parameter is measured (at the central wavelength, λ0) using 

equation Eq. 2-5: 
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There are two sources of error in this calculation; the error in the measurement of 

the location of the central wavelength, λ0, due to systematic error caused by the use of 

wavelength windowing to plot the envelope and the error in the measurement of the 

second derivative of the effective index with respect to wavelength. For simplicity this 

quantity is henceforth referred to as B.  

When two measurements are made independently the errors are added in 

quadrature. For example, given the function z = f(x, y) the error in z can be calculated:  
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B and λ0  are not independent since B depends on λ0, however, for simplicity we 

assume that the two are independent and later we will show that the error in λ0 is much 

smaller than the error in B and thus the error in measuring the dispersion parameter, D, 

really only depends on the error in measuring B. At this point, however, we proceed with 

the analysis assuming that the measurement of λ0 and B are independent. Under this 

assumption the error in the dispersion parameter can be found via the addition of the 

errors in quadrature:  
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Where Δλo is the error associated with measuring the central wavelength, which is 

+ half the wavelength window and ΔB is the error in calculating the second derivative of 

the effective index with respect to wavelength. Since B is calculated using the phase 

information in the envelope of the interference pattern via Eq. 4-5 we use this equation in 

order to determine ΔB. In order to simplify the calculation of ΔB, we ignore the third 

order dispersion term so that Eq. 4-5 becomes:  
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So that: 
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Thus if we assume that all variables in the experiment are independent then their errors 

can be added in quadrature:  
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ΔB is the total error in measuring the second derivative of the effective index with 

respect to wavelength, B, and it is due to both ΔA and the human error in measuring the 

length of the test fiber, Lf. 

ΔA is the error in calculating the B due to the error in locating the peaks of the 

envelope as shown in Fig. 5-8. The magnitude of this error is again + half the width of 
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the wavelength window used to plot the envelope, i.e. it is the systematic error. ΔA is 

calculated by adding the error in measuring the location of the troughs in quadrature: 
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 In order to reduce the systematic error it is best to choose the wavelength 

locations λo, λ1 and λ2 to be the troughs of the envelope since their locations are more 

sharply defined. Therefore this is the reason why the troughs of the envelope locations 

were used in the experiments instead of the peaks. The systematic error is illustrated in 

Fig 5-8.  

 

Fig. 5-8: Error in calculating B due to the error in locating the peaks of the interferogram 
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A numerical example of the error associated with the measurement of the 

dispersion parameters in the plots of the previous three sections is now presented for one 

of the SMF28
TM

 measurements. The single mode fiber was measured to be 0.395+0.001 

m. Thus the human error in the measurement of the fiber length is estimated to be ΔLf = 

+0.001 m. One of the interferograms from the measurement is shown in Fig. 5-8. The 

wavelength window size used in the experiments was 0.25nm therefore Δλ0,1,2=0.125nm. 

From Fig. 5-8 we can see that λ0 = 1580nm,  λ1 = 1540nm and λ2 = 1553nm. Thus from 

Eq. 5-11, ΔA = 0.0082nm. Substitution of ΔA= 0.0082nm and ΔLf = +0.001 m into Eq. 5-

10 (assuming m = 1 separation is used as in Fig 5-8) yields, 

mxxxB /10356.610268.110913.3 71415    which shows that the error in locating 

the peaks of the envelope has a larger effect than the human error in measuring the length 

of the fiber. Substitution of this value into Eq. 5-7 yields: 

kmnmpsxxD   /334.01012.110917.1 1318 . Which shows that the error in 

measuring B, has a larger effect than the error in determining the central wavelength. 

Thus ΔD is mainly determined by the error in measuring B regardless of whether or not 

λ0 and B are independent. This value for ΔD is consistent with the observed spread in the 

dispersion pattern in Fig. 5-3.   

  

In conclusion, the experimental results of Single Arm Interferometry confirm the 

theory developed in chapter 4. They show that the dispersion parameter can be calculated 

from the envelope of the fringe pattern produced by the interference of 3 waves in a 

balanced SAI. The experiments on Single mode fiber (SMF28
TM

) and Dispersion 
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Compensating Fiber (DCF) were used to confirm the theory behind the technique and 

once the technique was confirmed it was used to measure the unknown dispersion 

parameter plot for THF. The length of Twin hole fiber used in the experiment was larger 

than allowed by Eq. 4-28 so the technique of wavelength windowing, described in 

sections 4.5.1 - 4.5.3, had to be used. This technique was shown theoretically and via 

simulation to extend the maximum length of fiber that can be characterized by this 

technique. Ultimately the largest length of fiber that can be characterized is limited by the 

largest air path that can be produced in the experiment and the laser linewidth. 
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Chapter 6: Conclusions  

6.1 Expected Significance to Academia 

 

The single arm interferometer is introduced as an alternative to the Michelson or the 

Mach Zehnder configuration for interferometric measurements of the dispersion 

parameter. It will be most useful for measurements of the dispersion parameter in short 

lengths of fiber. The technology will be used to eliminate the need for the arm balancing 

required by dual arm interferometers and by doing so allow for greater ease in the 

commercialization of Interferometric dispersion measurement techniques.  

The new interferometer is significant for Academia since it can be studied and 

used alongside the earlier types of interferometers like the Michelson, the Mach-Zehnder 

and the Fabry Perot. This new interferometer provides academia with another tool for 

studying dispersion in short length fibers and waveguides which will be useful in the 

development of specialty fibers. These specialty fibers require simple and accurate short 

length characterization since they are generally made in very small quantities and their 

geometry tends to vary as a function of position along the fiber.  

Another significant academic achievement of the Single Arm Interferometer is 

that a paper has been written for this technique and it will be submitted shortly for review 

to the Journal ‘Optics Express’.  If it is accepted for publication the new technique will be 

accessible to anyone interested in measuring dispersion on short length fibers. This 

technique increases the ease of dispersion characterization and as a result it will lead to a 

greater number of dispersion measurements being performed, especially in the area of 

specialty fiber.  
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6.2 Expected Significance to Industry 

 

The new interferometer is significant to Industry since it eliminates the need to 

compensate for unwanted reflections by eliminating the need for a coupler altogether. As 

a result this interferometer is a simpler (less expensive) interferometric dispersion 

measurement device capable of characterizing the dispersion of short length optical fiber. 

As a result it is a viable commercial competitor to the current Modulation Phase Shift 

(MPS) based devices currently on the market. The new interferometer, however, has an 

advantage over MPS based devices since it has the ability to measure short length fiber 

with high accuracy.  

Also, since it can measure short lengths of fiber it has the ability for another type 

of measurement as well. Dispersion is a function of both material and dimensional 

(waveguide) properties of a fiber but if the dimensions, particularly the diameter of the 

fiber, vary then the dispersion will vary. If several small sections can be cut from various 

points on a long length fiber and the dispersion is measured in each of them then the 

variation in the dispersion can be plotted as a function of position in the fiber. This can 

then be directly related to the variation in the fiber diameter. The main point here is that a 

great deal of accuracy in measuring the fiber diameter can be achieved by measuring it 

indirectly via the dispersion and it would be an easy way for a fiber drawing company to 

perform quality control.  

Greater commercial interest in this device will enable measurement of dispersion 

in smaller lengths of fiber since larger bandwidth tunable lasers will be developed. Also 

the advancement in the speed of the tunable laser and scanning process will make each 

measurement faster to obtain.  
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6.3 Patent Application 

 

One of the most interesting features of a single arm interferometer is the ease with 

which it can be built. This ease of construction lends itself very nicely to economical 

commercial assembly of a dispersion measurement device. An idea which is currently 

under patent is to produce a cheap add-on module for a tunable laser system to allow it to 

make dispersion measurements.  A conceptual design of such a module is illustrated in 

Fig. 5-9:    

 

 
 

Fig. 5-9: Conceptual design for a dispersion measurement module for a tunable laser system. The 

connector labeled ‘To detector’ is the input to a power detector, the connector labeled input is 

connected to the output of a tunable laser. The test fiber can then be connected as shown in the 

diagram in order to perform the dispersion measurement.    

 

* [U of T Invention Disclosures: RIS ID #10001509 & RIS ID #10001591 Patent 

applications now underway] 

 This dispersion measurement module could be produced to work with, for 

example, the Agilent 8164A or 8164B Lightwave measurement system mainframe 

depicted in Fig. 5-10: 

 

 

Input 

To detector 

Mirror 

Circulator 

Collimating 
lens 

Test fiber 
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Fig. 5-10: Agilent 8164A/B Lightwave measurement system mainframe. 

 

 

The Agilent 8164A or 8164B Lightwave measurement mainframe is a mainframe 

which controls modules such as tunable lasers and measurement devices that are inserted 

into the slots on the mainframe. The cost of the mainframe and a tunable laser module is 

$20,000. A dispersion characterization system sold by Agilent, namely the Agilent 

86038A/B Photonic Dispersion and Loss Analyzer depicted below in Fig. 5-11 costs 

$130,000.  

                     

Fig. 5-11: Agilent 86038 A/B Photonic Dispersion and Loss Analyzer 
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Since this system includes the mainframe and tunable laser their value must be 

subtracted. This leaves about $110,000 for the dispersion and loss characterization 

devices in the system. Since an SAI has a higher precision, can characterize both short 

and long length fiber and it is less expensive to implement it is very easy to see that this 

technology is disruptive to the industry. As a result the commercial potential of this 

characterization technology is quite extraordinary.    

6.4 Conclusions 

 

In this paper we presented a novel fiber-based SAI to measure directly the dispersion 

coefficient in short lengths of fiber (< 50 cm) with a standard deviation (precision) as low 

as 0.0001 ps/nm. The technique utilizes the spectral interferogram created by three 

reflections and extracts the second-order dispersion from the envelope of the 

interferogram. The technique is shown to be a simpler alternative to the Michelson or 

Mach Zehnder interferometers. By eliminating one of the interferometer arms, the 

technique does not require calibration and are less susceptible to polarization and phase 

fluctuations. The constraints on the operating parameters of this technique, such as 

wavelength resolution, fiber length, and measurable bandwidth, were discussed in detail.  

We verified the technique experimentally by performing a dispersion 

measurement on SMF28
TM

 and DCF. Our measured dispersion results on SMF28
TM

 

showed good agreement with the simulated dispersion values based on published fiber 

geometry and material properties. Our measurement results on DCF agreed well with the 

measurement performed on a much longer DCF using a commercial dispersion 

measurement system. In addition to SMF28
TM

 and DCF, single arm interferometry was 

used to measure the dispersion parameter of a twin-hole fiber for the first time.  
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The operating parameters of this technique were discussed in detail and it was 

shown that the range of measurable fiber lengths can be extended using wavelength 

windowing and a tunable laser with a random step size. This method can also be used to 

measure the dispersion of any waveguide in general and is not limited to optical fiber.  
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Appendix A: Matlab Code  

 

A.1: Generating the Interference Pattern and the Envelope  

 
 
% Envelope and Interference pattern program 

  

clear all 

close all 

clc 

  

% Parameters 

step_size = 1*10^-12;% 1 pm step size 

Lf = 0.395;            % Length of fiber in meters 

Lair = 1.472469*Lf;    % 1.47235 is the group index 

Uo=1;                % First Fresnel reflection 

gamma=1;             % Fraction of first Fresnel reflection  

                     % reflected from first facet 

alpha=1;             % Fraction of the first Fresnel  

                     % reflection reflected from the mirror 

 

% Interference pattern 

load neff2.mat        % neff for single mode fiber  

neff_fit = polyfit(lambda1, neff, 3); % Interpolated  

lambda = 1510*10^-9:step_size:1640*10^-9; % Interpolated  

neff_sim = polyval(neff_fit, lambda);     % Interpolated    

beta = (2*pi./lambda) .* neff_sim;        % Beta values interpolated  

ko=2*pi./lambda; 

  

% Entire interference pattern 

I=abs(1+alpha*exp(i*beta*2*Lf)+gamma*exp(i*(beta*2*Lf+ko*2*Lair))).^2;   

 

% Envelope of the interference pattern 

envelope_full = Uo^2*(1 + alpha^2 + gamma^2 + 4*alpha*abs(cos(beta*Lf - 

ko*Lair)) + 2*alpha*(gamma-1) + 2*gamma);    

figure 

plot(lambda,I,lambda,envelope_full, 'x'); 

xlabel('lambda (nm)') 

ylabel('Intensity (a.u.)') 
 

 

A.2 Calculating Neff 

 
clc; 
clear; 
warning off; 

  
global Ks Ko r0 rj n_j tj m beta w l eps0 mu0 ns no lambda0 V Uj Wj Rs 

R1 p a 
% Fiber parameters ================================================ 
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for lambda_i=0:100 

  
    lambda_i 
    lambda0=1.5e-6+.1e-6*lambda_i/100 
    lambda1(lambda_i+1)=lambda0; 
    ko=2*pi/lambda0 
    % SMF parameters 
    m=1; 
    %NA=.122; 
    NA=0.112 
    Delta_n=0.0036; 
    n1=silica_index2(lambda0*1e6,1); % Taken from data file 
    n2=silica_index2(lambda0*1e6,0); % Taken from data file  
    Dn=n1-n2; 
    % Source fiber 
    Rs=2.3e-6; 
    V=ko*Rs*sqrt(n1^2-n2^2); 
    ws=Rs*(0.65+1.619*V^-1.5+2.879*V^-6); 
    no=n1; 
    ns=n2; 
    Uo=fzero(@LP,V-.4);    % Function LP defined below    
    Xo=Uo/Rs; 
    Wo=sqrt(V^2-Uo.^2); 
    beta(lambda_i+1) = sqrt(ko^2*n1^2-(Uo/Rs).^2); 
    neff(lambda_i+1) = beta(lambda_i+1)/ko; 
end 

  
save neff2 lambda1 beta neff 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 

 

function S1=LP(U) 

  
global V no ns m 

  
W=sqrt(V^2-U.^2); 
Jp=(besselj(m-1,U)-besselj(m+1,U))/2; 
Kp=(besselk(m-1,W)+besselk(m+1,W))/2; 
J=besselj(m,U); 
K=besselk(m,W); 

  
%S1=(Jp./(U.*J) + Kp./(W.*K)).*((ns/no)^2*Jp./(U.*J)+Kp./(W.*K)) - 

m^2*(1./U.^2+1./W.^2).*((ns/no)^2./U.^2+1./W.^2); 
S1=besselj(0,U)./(U.*besselj(1,U)) - besselk(0,W)./(W.*besselk(1,W)); 
end 
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A.3: Probability vs. Several other Parameters 

 

A.3.1: Probability vs.  window size  

 
% Probability versus WINDOW SIZE 

  
clear all 
close all 
warning off 
clc 

  
% Independent parameters that may be varied  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 

Lf = 0.395;              % Fiber length in meters 
step_size = 1*10^(-12);  % Average wavelength step of the tunable laser 
tolerance = 0.02;        % Tolerance in locating the peak (gives >99.9%  

 %  of peak) 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

sigma = 0.17*10^-12; 
for i = 1:30 
    coarse_sampling_bandwidth(i) = i* 0.01*10^-9;   % Width of window 

    Pnone_average1(i) = 1 - Probability(Lf,   

            coarse_sampling_bandwidth(i), step_size, tolerance, sigma) 
end 
% Convert to nm 
coarse_sampling_bandwidth = coarse_sampling_bandwidth * 10^9;  

  
% Plot the curve 
figure 
plot(coarse_sampling_bandwidth,Pnone_average1, 'b') 
xlabel('Window Size in nm') 
ylabel('Probability') 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
 

sigma = 0.5*10^-13;                          % sigma = 0 
% Probability vs window size 
for i = 1:30 
    coarse_sampling_bandwidth(i) = i* 0.01*10^-9;   % Width of window  
    Pnone_average2(i) = 1 - Probability(Lf, 

    coarse_sampling_bandwidth(i), step_size, tolerance, sigma) 
end 
% Convert to nm 
coarse_sampling_bandwidth = coarse_sampling_bandwidth * 10^9;  

  
% Plot the curve 
hold on 
plot(coarse_sampling_bandwidth,Pnone_average2, 'g') 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

 
sigma = 1*10^-12; 
% Probability vs window size 
for i = 1:30 
    coarse_sampling_bandwidth(i) = i* 0.01*10^-9;   % Width of window  
    Pnone_average3(i) = 1 - Probability(Lf, 

    coarse_sampling_bandwidth(i), step_size, tolerance, sigma) 
end 
% Convert to nm 
coarse_sampling_bandwidth = coarse_sampling_bandwidth * 10^9;  

  
% Plot the curve 
hold on 
plot(coarse_sampling_bandwidth,Pnone_average3, 'r') 

 
 

 

A.3.2: Probability vs. average step size  
 
% Probability versus STEP SIZE 

  
clear all 
close all 
warning off 
clc 

  
% Independent parameters that may be varied 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Lf = 0.395;                         % Fiber length in meters 
tolerance = 0.02;                   % Tolerance in locating the peak  
coarse_sampling_bandwidth = 0.25*10^-9;              % Width of window 

for finding peak of envelope 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

sigma = 0.05*10^-12; 
% Test program 
for i = 1:20 
   step_size(i) = i*0.1*10^-12 
   Pnone_average(i) = 1 - Probability(Lf, coarse_sampling_bandwidth,  

   step_size(i), tolerance, sigma) 
end 

  
% Convert to pm 
step_size = step_size * 10^12;  

  
% Plot the curve 
figure 
plot(step_size,Pnone_average, 'g') 
xlabel('Step Size in picometers') 
ylabel('Probability') 
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hold on 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
sigma = 0.17*10^-12; 
% Test program 
for i = 1:20 
    step_size(i) = i*0.1*10^-12 
     Pnone_average(i) = 1 - Probability(Lf, coarse_sampling_bandwidth, 

     step_size(i), tolerance, sigma) 
end 

  
% Convert to pm 
step_size = step_size * 10^12;  

  
% Plot the curve 
plot(step_size,Pnone_average, 'b') 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
 

sigma = 1*10^-12; 
% Test program 
for i = 1:20 
    step_size(i) = i*0.1*10^-12 
    Pnone_average(i) = 1 - Probability(Lf, coarse_sampling_bandwidth,  

    step_size(i), tolerance, sigma) 
end 

  
% Convert to pm 
step_size = step_size * 10^12;  

  
% Plot the curve 
plot(step_size,Pnone_average, 'r') 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

A.3.3: Probability vs. fiber length 
 
% Probability versus FIBER LENGTH 
clear all 
close all 
warning off 
clc 

  
% Independent parameters that may be varied  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 

tolerance = 0.02;                 % Tolerance in locating the peak 

coarse_sampling_bandwidth = 0.25*10^-9; % Width of window  

step_size = 1*10^(-12); % Average wavelength step of the tunable laser 

  
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

sigma = 0.05*10^-12; 
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%Pnone_average = Probability(Lf, coarse_sampling_bandwidth, step_size, 

tolerance) 
% % Probability vs Fiber length 
for i = 1:150 
    Lf(i) = 0.01*i; 
    Pnone_average(i) = 1 - Probability(Lf(i), 

coarse_sampling_bandwidth, step_size, tolerance, sigma); 
    i 
end 

  
% Plot the curve 
figure 
plot(Lf,Pnone_average, 'g' ) 
xlabel('Fiber Length in meters') 
ylabel('Probability') 
hold on 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

sigma = 0.17*10^-12; 
% % Probability vs Fiber length 
for i = 1:150 
    Lf(i) = 0.01*i; 
    Pnone_average(i) = 1 - Probability(Lf(i), 

     coarse_sampling_bandwidth, step_size, tolerance, sigma); 
end 

  
% Plot the curve 
plot(Lf,Pnone_average, 'b') 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

sigma = 1*10^-12; 
% Probability vs Fiber length 
for i = 1:150 
    Lf(i) = 0.01*i; 
    Pnone_average(i) = 1 - Probability(Lf(i),  

    coarse_sampling_bandwidth, step_size, tolerance, sigma); 
end 

  
% Plot the curve 
plot(Lf,Pnone_average, 'r') 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

A.3.4: Probability vs. tolerance 

 
% Probability vs. Tolerance 

  
clear all 
close all 
warning off 
clc 
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% Independent parameters that may be varied size 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Lf = 0.395;                      % Fiber length in meters 
step_size = 1*10^(-12);          % Average wavelength step  

tolerance = 0.02;                % Tolerance in locating the peak 

coarse_sampling_bandwidth = 0.25*10^-9;    % Width of window  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
sigma = 0.05*10^-12;     % Standard deviation of the source 
for i = 1:50 
    tolerance(i) = i* 0.001;  % Width of window 

    Pnone_average(i) = 1 - Probability(Lf, coarse_sampling_bandwidth, 

    step_size, tolerance(i), sigma) 
end 
% Convert to % 
tolerance = tolerance * 100;  

  
% Plot the curve 
figure 
plot(tolerance,Pnone_average, 'g') 
xlabel('Tolerance: % of the peak spacing of the carrier ') 
ylabel('Probability') 
hold on 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

sigma = 0.17*10^-12;        % Standard deviation of the source 
for i = 1:50 
    tolerance(i) = i* 0.001;   % Width of window     

    Pnone_average(i) = 1 - Probability(Lf, coarse_sampling_bandwidth, 

    step_size, tolerance(i),sigma) 

end 
% Convert to % 
tolerance = tolerance * 100;  

  
% Plot the curve 

  
plot(tolerance,Pnone_average, 'b') 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

sigma = 1*10^-12;     % Standard deviation of the source 
for i = 1:50 
    tolerance(i) = i* 0.001;   % Width of window 

    Pnone_average(i) = 1 - Probability(Lf, coarse_sampling_bandwidth,  

    step_size, tolerance(i), sigma) 
end 
% Convert to % 
tolerance = tolerance * 100;  

  
% Plot the curve 
plot(tolerance,Pnone_average, 'r') 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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A.3.5: The Probability calculating function 

 
function Pnone_average = 

Probability(Lf,coarse_sampling_bandwidth,step_size,tolerance,sigma) 

 

  

% Dependent parameters 

N = coarse_sampling_bandwidth/step_size;      

   % n = Step number, N = number of steps of the tunable laser 

  

% Dependent on fiber 

load neff2.mat   % neff for single mode fiber calc from prog in A.2.6 

neff_fit = polyfit(lambda1, neff, 4);  % Interpolated  

lambda = 1510*10^-9:step_size:1640*10^-9;             

neff_sim = polyval(neff_fit, lambda);                 

     

beta = (2*pi./lambda) .* neff_sim;               

ko=2*pi./lambda; 

lambda_p = lambda.^2./(2*neff_sim*Lf);  

 % Fringe period as a function of wavelength 

 

% Determine M 

summation = 0; 

M = 1; 

while summation < coarse_sampling_bandwidth 

    summation = summation + lambda_p(M); 

    M = M+1; % m = Peak number, M = number of peaks of  

             % carrier in the coarse sampling bandwidth 

end 

lambda_p = summation/M;  

% lambda_p is now the average carrier period 

% Dep on required tolerance 

epsilon = tolerance*lambda_p; 

 

% Probability calculation 

lambda0 = 0:lambda_p/100:lambda_p;   

% Average of Pnone for different lambda0's over the period  

% of one carrier wave using 100 slots 

  

Pnone = 1;        % Initialize  

for m = 1:M 

    for n = 0:N-1 

        t_upper = ((m*lambda_p+(epsilon/2))- 

   (n*step_size+lambda0))/((2)^0.5*sigma); 

        t_lower = ((m*lambda_p-(epsilon/2))- 

   (n*step_size+lambda0))/((2)^0.5*sigma); 

        Pmn = 0.5*(erf(t_upper)-erf(t_lower)); 

        Pnone = Pnone .* (1 - Pmn); 

    end 

end 

Pnone_average = (1/100) * sum(Pnone);  

% Equivalent to taking (1/period) * integral --> Averaging  

% function 

end 
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A.4: Determining the Precision of the Measurements 

 

A.4.1: Standard deviation of the SMF28TM Measurement 
% Standard deviation of measured points for SMF 

  
clear all 
close all 
clc 

  
lambda = [1561.75 1562 1568.00625 1568.933 1570.6 1574.56 1578.92 

1582.33 1582.5 1587.75 1591.85 1585.9 1585.179 1584.5 1582.0625 1578.35 

1575.525]; 
D = [16.82755171 17.18662336 17.77326099 17.20098046 17.59624122 

18.2471311 17.68196927 18.2652686 17.92272445 18.70175776 18.92026714 

18.39241202 17.89563351 18.398473 17.65587929 17.87261432 17.83568272]; 

  
D_eq = polyfit(lambda, D, 1); 
D_fit = polyval(D_eq, lambda); 

  
figure  
plot(lambda, D, '.', lambda, D_fit) 

  
x = D - D_fit; 
mu = mean(x) 
sigma = std(x) 

 

A.4.2: Standard deviation of the DCF Measurement 
% Standard deviation of measured points for DCF 

  
clear all 
close all 
clc 

  
lambda = [1589.58 1577.06 1571.69 1567.09 1561.29 1556.3875 1552.03 

1549.04 1545.5 1549.45 1553.21 1556.94 1560.6 1563.96 1566.76 1569.38]; 
D = [-116.7629518 -111.959276 -112.4753801 -111.047913 -107.8351303 -

107.2692935 -108.0823711 -105.6770865 -103.8157538 -107.9982834 -

108.7332739 -108.7422301 -108.4420574 -110.2654607 -110.2692982 -

111.0290457]; 

  
D_eq = polyfit(lambda, D, 1); 
D_fit = polyval(D_eq, lambda); 
figure  
plot(lambda, D, '.', lambda, D_fit) 

  
x = D - D_fit; 
mu = mean(x) 
sigma = std(x) 
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A.4.3: Standard deviation of the THF Measurement 
% Standard deviation of measured points for THF 

  
clear all 
close all 
clc 

  
lambda = [1616 1605.5 1597 1559.5 1557.5 1550 1557 1570 1578.5 1585 

1587 1588.5 1588 1583 1580.5 1573.5 1568 1574 1576 1584.5]; 
D = [13.8648 13.0351 13.0996 12.3733 12.7532 12.9702 12.6568 12.7846 

12.7902 12.8739 12.7401 12.6646 13.5784 13.2361 12.6629 12.4485 13.1504 

13.6222 13.6876 13.3069]; 

  
D_eq = polyfit(lambda, D, 1); 
D_fit = polyval(D_eq, lambda); 

  
figure  
plot(lambda, D, '.', lambda, D_fit) 

  
x = D - D_fit; 
mu = mean(x) 
sigma = std(x) 
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