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Abstract 

This thesis introduces the idea that a simulated interferogram can be used as a reference for an interferometer. This 

new concept represents a paradigm shift from the conventional thinking, where a reference is the phase of a wave-

front that traverses a known path. The simulated interferogram used as a reference is called a virtual reference. This 

thesis develops the theory of virtual reference interferometry and uses it for the characterization of chromatic 

dispersion in short length (<1m) fibers and optical components.  

Characterization of chromatic dispersion on short length fiber and optical components is a very difficult challenge. 

Accurate measurement of first and second order dispersion is important for applications from optical component 

design to nonlinear photonics, sensing and communications. Techniques for short-length dispersion characterization 

are therefore critical to the development of many photonic systems. The current generation of short-length 

dispersion measurement techniques are either easy to operate but lack sufficient accuracy, or have sufficient 

accuracy but are difficult to operate. The use of a virtual reference combines the advantages of these techniques so 

that it is both accurate and easy to operate. Chromatic dispersion measurements based on virtual reference 

interferometry have similar accuracy as the best conventional measurement techniques due to the ability to measure 

first and second order dispersion directly from the interference pattern.   

Unique capabilities of virtual reference interferometry are demonstrated, followed by a derivation of the operational 

constraints and system parameters. The technique is also applied to the characterization of few-mode fibers, a hot 

topic in telecommunications research where mode division multiplexing promises to expand network bandwidth. 

Also introduced is the theory of dispersive virtual reference interferometry, which can be used to overcome the 

bandwidth limitations associated with the measurement of near-zero dispersion-length optical components via 
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compression of the interference pattern. Additionally, a method for utilizing the virtual reference interferometer in a 

low-coherence setup is introduced, enabling characterization in new wavelength ranges and further reducing the cost 

of characterization.  
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Chapter 1.  
Introduction & background 

 

1.1 Overview  

We live in the information age, where the creation, dissemination and consumption of information are significant 

cultural and socioeconomic activities. Our modern lifestyles are heavily dependent on the telecommunication 

technologies that enable instant communication between people anywhere on our planet. From our modern smart-

phones that stream text, messaging and video data to our high definition televisions, laptops, tablets and personal 

computers, our appetite for data and bandwidth grows daily. To support our data rich lifestyles, high-throughput 

wide-bandwidth fiber optic telecommunications systems are critical. Fiber optic cable is a low-loss medium capable 

of carrying signals great distances and its wide bandwidth enables frequency based signal multiplexing. Today a 

single channel in a fiber deployed in existing networks can carry as much as 40Gbit/s, which is the amount of 

information in over 1 million telephone conversations or more than 15 thousand streaming high definition videos. 

This is much more data than can be transmitted on standard electrical Ethernet cables which typically carry up to 1 

Gbit/s. Despite this impressive capability we are approaching the limits of the information carrying capacity of our 

current generation of optical networks. Considerable research is being done to develop the next generation of optical 

networks with bit rates beyond 400Gbit/s, including technologies that multiplex signals across time, frequency and 

space [1] [2] [3] [4] [5]. Regardless of the multiplexing technique used to increase data throughput, the performance 

of current and future optical telecommunications channels depends heavily on the compensation of transmission 

impairments.  Impairments that affect the performance of an optical channel include stress, thermal fluctuations, 

chemical pollutants, loss, and chromatic dispersion. Of these impairments chromatic dispersion has the greatest 

effect on data throughput. Because of this, accurate dispersion characterization of all photonic devices in an optical 

network is of critical importance.  

Chromatic dispersion is the phenomenon that causes different frequencies of light to travel at different velocities due 

to the wavelength (frequency) dependence of the refractive index of a material [6]. The effect can be observed in the 

spreading of light into colors through a prism. Since white light is comprised of a broad spectrum of wavelengths, 

when it passes through a prism each wavelength encounters a different index of refraction and is bent at a different 

angle according to the Snell-Descartes law of refraction [6]. In an optical waveguide the index variation is caused  

by the optical properties of the material (material dispersion) and by the optical confinement produced by the 

geometry of the waveguide (waveguide dispersion). A detailed analysis of both material and waveguide dispersion 

is presented in Appendix A. The refractive index observed in a waveguide due to both material and waveguide 

effects is referred to as the effective refractive index ( effn ). The variation of the effective refractive index with 

wavelength can be related to the first, second, third and higher order dispersion in the waveguide. The higher order 
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dispersion is best understood from a mathematical perspective via a Taylor expansion around a specific wavelength 

0  as   

      
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All of the optical phenomena to be discussed in this thesis may be derived from this expansion. For example, the 

phase velocity of a particular wavelength of light 0  in a medium, is the distance traversed by that phase front over 

a given period of time. The phase velocity can be related to the effective index of the medium by  
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  Eq. 1-2 

where c  is the speed of light in vacuum. The phase of an optical signal that has traversed a path fL  with an 

effective phase index ( )eff on  is given by  
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The first order dispersion is often referred to as the group velocity, group index or group delay. The term first order 

is used since it relates to the first two (linear) terms in the expansion in Eq. 1-1. Group velocity refers to the distance 

traversed by the envelope of a specific wavelength 0  of an optical pulse over a given period of time and is given as  

     ( )
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  Eq. 1-4 

where the envelope of the optical pulse of wavelength 0 that travels at the speed of light c  in vacuum has its 

velocity reduced by the group index ( )g oN  within the waveguide. The differences between the phase velocity and 

the group velocity are illustrated in Fig. 1-1. 

 

Fig. 1-1. Illustration of the difference between phase velocity and group velocity 
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The group index is related to the first two terms in Eq. 1-1 as  
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The group delay ( )g o  refers to the time taken for the envelope of an optical pulse of wavelength o to traverse a 

given distance fL  and may be described by   
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The second order dispersion is related to the slope of the group delay curve or the third term in Eq. 1-1 and may be 

described as 
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 Eq. 1-7 

The second order dispersion is of particular importance in a telecommunication system as it can cause pulse 

broadening. The pulse broadening in the time domain is related to the range of wavelengths that make up an optical 

pulse and the second order dispersion parameter of the fiber as 

        ( )o fD L      Eq. 1-8 

It is important to note that the approximation in Eq. 1-8 assumes that the pulse broadening is dominated by the 

second order dispersion. When the second order dispersion is small the effects of the third and higher order 

dispersion may not be ignored. In a digital optical telecommunications system, since a pulse is used to represents the 

binary digit 1 and the absence of a pulse represents binary 0, the chromatic dispersion of the fiber causes pulses 

(used to represent 1 or 0) to broaden beyond their allocated bit slot.  Pulse broadening causes adjacent bits to overlap 

and makes it difficult for the receiver to distinguish between 1 and 0, in an effect known as intersymbol interference 

[7]. This effect makes it necessary to use wider bit slots, which effectively lowers the number of bits that can be 

transmitted over a given period of time. This effectively results in a reduction in the system bandwidth (data 

throughput capacity). The effect of intersymbol interference is illustrated in Fig. 1-2.    

 

Fig. 1-2. Chromatic dispersion causes broadening of the pulse width leading to intersymbol interference and 

reduction in system bandwidth.    
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In a telecommunications system the pulse broadening caused by chromatic dispersion can be compensated for by 

using bulk or distributed dispersion compensation schemes. Chirped fiber Bragg gratings (CFBG) are one example 

of a bulk dispersion compensation scheme [7]. Dispersion compensating fiber (DCF) is an example of a distributed 

compensation scheme since these fibers can be placed at periodic points in a transmission line to compensate for 

second order dispersion in an optical fiber [7]. In either compensation scheme, the goal is to ensure that the total 

dispersion × length of the optical channel is reduced to zero such that 

 0fiber fiber compensation compensationD L D L   Eq. 1-9 

Where fiberD is the second order chromatic dispersion of the transmission fiber, fiberL  is its length, compensationD  is 

the second-order chromatic dispersion of the compensation element (DCF or CFBG) and compensationL is its length. In 

order to achieve this balance, accurate dispersion characterization of each element is crucial. Accurate dispersion 

characterization is also important for the design of individual network components, such as sources and receivers. 

For example, pulsed fiber lasers are an important source in a fiber optic network. Pulses are typically generated in 

fiber lasers using some form of active or passive mode locking mechanism. Within these laser cavities the dispersion 

of the gain fiber is often balanced by that of a dispersion compensating fiber (with negative dispersion) to prevent 

pulse spreading within the laser cavity itself. This is one example where accurate short length dispersion is essential.  

     Although nonlinear applications requiring dispersion characterization are not directly covered in this work, they 

are worth noting to indicate the widespread need for this capability by the research community. In non-linear 

systems, dispersion affects the magnitude, phase and the efficiency of the nonlinear process [8] [9] [10] [11]. One 

example of a nonlinear application is the generation of optical solitons [9] [10]. In order to generate an optical 

soliton the effects of chromatic dispersion and self phase modulation [9] (a phenomenon in which the intensity 

profile of a pulse modifies the phase of the pulse and can be used to compress it [8]) must be in balance with each 

other. Therefore in order to generate a soliton the dispersion must first be well characterized so that the intensity of 

the optical pulse can be appropriately selected to ensure that the pulse spreading effect of chromatic dispersion is 

balanced by the pulse compression effect of self phase modulation. Other nonlinear effects such as second harmonic 

generation, three-wave mixing and four-wave mixing require knowledge of chromatic dispersion since it determines 

the interaction lengths between the individual waves produced by these effects, which are at different wavelengths. 

One technique used to increase the interaction length between two waves of different wavelength produced via 

second harmonic generation is known as Quasi-Phase Matching (QPM) [12]. Since QPM attempts to match the 

group delay between two waves of different wavelength, an accurate knowledge of the dispersion is essential.  

1.2 Motivation 

The primary motivation of this thesis is to measure the dispersion of short-length, low-dispersion optical fibers and 

components and to develop a method for their characterization. The ability to make dispersion measurements using 

short lengths of optical fiber is important when testing fibers for effects associated with aging (i.e. heat, chemical 

infiltration) since short sections can be tested without the need to sacrifice an entire reel. Another important 
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application is in testing fiber properties at various locations along a fiber. This is particularly important in 

determining the quality of the fiber drawing process as non-uniformity in the fiber diameter can be measured from 

the variation in chromatic dispersion between fiber samples [13]. Short length characterization is also particularly 

important in the testing of new or experimental specialty fibers and optical components where long lengths are 

usually too costly to acquire or not readily available. As a result, conventional dispersion measurement techniques 

requiring long lengths of fiber (described in Chapter 2) cannot be used for characterization. Twin hole fiber (THF), 

characterized in Chapter 3, and photonic crystal fiber (PCF) [14] are two examples of a specialty fiber for which 

long spans are very costly and generally not available. These fibers have many possible design configurations and it 

is very difficult to develop a theoretical model that describes the dispersion of a particular design. Another class of 

fibers where this is also the case includes Few-mode fibers (FMFs), characterized in Chapter 4. These fibers, which 

will be critical to expanding the information carrying capacity of modern telecommunications networks, can have 

multiple transverse or polarization modes for which the dispersion parameter may vary dramatically. An additional 

consideration for these types of specialty fibers is that fiber geometry is not always uniform along its length, 

resulting in a variation in fiber dispersion along its length. As a result, the characterization must be performed on the 

particular span of fiber to be used in an experiment or photonic system. 

Certain types of specialty fibers, such as erbium doped fiber (EDF) and dispersion compensating fiber (DCF) are 

often used in short length spans for loss and dispersion compensation. EDF (characterized in Chapter 5), for 

example, is often used in short length spans to build erbium doped fiber amplifiers (EDFAs) to compensate for 

losses in a telecommunication channel [15] or as a gain medium in a fiber laser  [9]. Dispersion in these fibers is 

particularly important for mode-locked fiber lasers for, which the optical pump power [16] [17], affects the group 

velocity of optical pulses in the laser cavity [7] (demonstrated in Chapter 5), and changes the mode-locking 

condition [9]. Knowledge of the dispersion in this type of gain fiber is critical if the additional dispersion added to 

the channel by gain fiber is to be compensated. Dispersion compensating fiber (DCF), characterized in Chapter 3, as 

well as dispersion compensating photonic crystal fiber (DC-PCF) [14] are often used in short length spans to 

compensate the dispersion introduced in an optical channel by both EDFAs and standard telecommunication fiber 

(SMF28). These fibers allow a high degree of control over the dispersion properties via modification of the fiber 

geometry. It is therefore critical to experimentally test how close the fabricated fiber dispersion is to the design.  

Experimental verification and dispersion compensation is most accurate when the specific short sections of fiber 

used in the channel are tested individually. A class of fiber for which dispersion characterization is difficult is 

known as dispersion shifted fiber (DSF) (characterized in Chapter 5). In these fibers the dispersion parameter is 

close to zero and actually crosses zero somewhere within the scan range (i.e. scan range typically used in 

telecommunications). The characterization of this type of fiber near its zero-dispersion wavelength is difficult 

because wide bandwidths (possibly exceeding available sources) are required. For this fiber and specialty fibers like 

it, a specialized technique capable of both short length and low dispersion characterization is required. A short 

length low dispersion characterization technique is also essential for the analysis of dispersion in optical 

components. For example, chirped fiber Bragg gratings (CFBGs) (characterized in Chapter 3) are often used for 

dispersion compensation in high repetition rate fiber lasers that require short cavity lengths or to compensate for 
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dispersion in long length telecommunication channels. These optical components are short in length and therefore 

can only be characterized using a short-length characterization technique.  

1.3 Objectives 

The primary objective of this thesis is the development of a practical technique that can quickly and easily 

characterize the dispersion in short-length fibers and optical components with small dispersion-length (DL) 

products. To this end, the first objective is the introduction and verification of the technique in its simplest form. 

Verification will be carried out via the characterization of dispersion standards as well as comparison of 

experimental results to those obtained using conventional measurements techniques. A second objective is to 

provide a detailed analysis of the theoretical framework of the technique, including system parameters and 

limitations. A third objective is to demonstrate that the technique is a fast, accurate, practical and easy to implement 

method that is capable of characterizing short-length fibers and optical components. A fourth objective is to 

demonstrate that the technique is of practical utility for measuring leading edge optical components, employing 

spatial division multiplexing schemes, by showing that it can simultaneously characterize polarization and 

transverse modes in a few-mode fiber. A fifth objective is to delve deeper into the possibilities for increasing the 

flexibility and versatility of the technique by showing how a dispersive virtual reference may be used to enable 

measurements that would otherwise be impossible using a limited bandwidth source. The final objective is to 

consider how the technique may be used in applications outside dispersion characterization.       

1.4 Organization of thesis  

This thesis is organized into seven chapters. Chapter 1 provides an introduction to the basic concepts, background, 

motivation and objective behind this work. Chapter 2 describes the conventional techniques that may be used for 

characterizing dispersion and illustrates the gap in conventional techniques that motivated the development of 

virtual reference interferometry. Chapter 3 then formally introduces virtual reference interferometry and 

demonstrates its advantages in comparison to conventional techniques as well as some important and unique 

capabilities. Chapter 4 demonstrates how VRI can be used to simultaneously characterize polarization and transverse 

modes in state-of-the-art few-mode-fibers used in mode-division-multiplexing based telecom systems. Chapter 5 

dives deeper into the implications of using a virtual reference by adding a new dimension to VRI, a dispersive-

virtual reference. The addition of dispersion into the reference allows for measurements to be made that would 

otherwise be impossible with a limited bandwidth source. Chapter 6 extends the virtual reference to low-coherence 

dual arm interferometer configurations to demonstrate how the technique may be used for these configurations and 

the advantages it brings. Chapter 7 concludes this thesis by outlining the wider significance of this work both 

academically and practically (i.e. in industry) while considering the potential future applications.    
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Chapter 2.  
Conventional dispersion characterization techniques 

In this chapter, conventional measurement techniques for the characterization of chromatic dispersion are 

introduced. The techniques include those based on time-of-flight (TOF) [18] [19] [20] [21], modulation-phase-shift 

(MPS) [22] [19] [23] [24] and interferometry [19] [13]. Among these, TOF and MPS are the most widely used 

commercial (field) measurement techniques. Interferometric techniques, on the other hand, are more widely used in 

academic laboratories. This chapter provides a review of the conventional dispersion measurement techniques and 

compares their performance. The introduction of these techniques sets the stage for the introduction of virtual 

reference interferometry in Chapter 3 which can be used in both academic and commercial settings.   

2.1 Time-of-flight  

In a time-of-flight (TOF) based measurement technique [18] [19] [20] [21] a tunable laser sends optical pulses 

through an optical fiber toward a detector, as illustrated in Fig. 2-1. The second order dispersion (dispersion-length 

product) may then be determined by using Eq. 1-7 in one of two ways. The first is to send individual pulses at 

different wavelengths ( 1  and 2 ) with a spectral separation 2 1      along a fiber and to measure the change 

in the group delay g between the two pulses, as illustrated in Fig. 2-1(a). The second method for measuring the 

second order dispersion using Eq. 1-7 is to measure the pulse broadening g  directly (temporal width of pulse) as 

well as directly measuring the spectral bandwidth   of the pulse, as illustrated in Fig. 2-1 (b).    
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Fig. 2-1.  Time-of-flight dispersion measurement techniques (a) via measurement of temporal separation 

between pulses of different wavelength (b) via direct measurement of pulse broadening.  

The TOF technique has a measurement precision between   o fD L  0.1 to 1 ps/nm [19] [20] depending on 

the speed of the electronics, but typically requires several kilometers of fiber to accumulate a temporal change that is 

large enough to be detected. For example, if we assume the dispersion is that of SMF28 (i.e. 18 ps/nm∙km) and that 

the relative error of the dispersion plot cannot exceed 1% such that 

      
  
 Rel% 1%

o f

o f

D L
E

D L






   Eq. 2-1 

then the fiber length required to achieve this would be between 0.56 and 5.6 kilometers. Using a TOF technique for 

the characterization of short length (<1 m) fiber samples, however, is not feasible as the requirements on both the 

pulsed tunable laser and electronic sampling speed becomes prohibitive. The next section discusses another 

technique that is also typically used for the characterization of long fiber samples.       

2.2 Modulation-phase-shift 

In techniques based on modulation-phase-shift (MPS) [22] [23] [24] an RF signal amplitude modulates a single 

wavelength continuous-wave optical signal. The dispersion in the fiber under test can be measured by detecting the 

phase changes in amplitude modulated RF envelope (at the detector) as the wavelength of the continuous wave 

optical signal is varied, as illustrated in Fig. 2-2.  
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Fig. 2-2. Dispersion measurements via the modulation phase shift technique 

The relative phase change in the amplitude modulated signal at different wavelengths can then be measured and the 

group delay calculated using Eq. 1-6. The second order dispersion may also be calculated using Eq. 1-7. The MPS 

technique has a precision very similar to the TOF technique with   o fD L  0.1 to 1 ps/nm [23] [24]. As a 

result, the fiber lengths required by the MPS technique are similar to that required in the TOF technique. The 

precision depends on the frequency and jitter of the RF modulator (smaller period in modulation and low jitter 

makes small phase shifts easier to detect). To characterize short length fiber, however, the requirements for the 

frequency of the RF modulator and the sampling speeds become prohibitive. For this reason the MPS technique is 

typically used for the characterization of long length fiber.  

Both the MPS and TOF techniques require long lengths of fiber to produce dispersion plots with a reasonable 

standard error. The characterization of long length fiber is feasible for standard fibers, for which long length spans 

are readily available. However, for the characterization of specialty fibers [14] [25] [26] [27] and short length optical 

components (where long-length samples are either too costly or unavailable), short length (<1 meter) 

characterization techniques are desirable. For short-length dispersion characterization, interferometric [13] [17] [19] 

[27] [28] [29] [30] measurements are generally preferred. Interferometric dispersion measurements may either be 

based on temporal interferometry or spectral interferometry. Both types will be discussed in the following sections.  

2.3 Temporal interferometry 

In temporal interferometry, light from a broadband source passes through the test fiber and a variable reference path. 

As the variable reference path is moved at a constant speed the interference pattern produced is sampled by a 

detector (as a function of time; later correlated to position) [16] [17] [28] [31] [32], as illustrated in Fig. 2-3. A 

tracking laser is often used to track position directly and increase accuracy [28]. 
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Fig. 2-3. Temporal interferometry based dispersion measurement technique 

A Fourier transform of the interference pattern then converts the spatial domain signal to a spectral domain signal as 

illustrated in Fig. 2-4.   

 
Fig. 2-4. Conversion of temporal (spatial delay length) interferogram to spectral interferogram via a Fourier 

transform. The envelope on the temporal interferogram is due to the coherence function of the source. 

The chromatic dispersion can then be measured from the spectral interferogram using one of the unbalanced spectral 

interferometry techniques presented in the next section. The main problem with temporal interferometry is that the 

need to translate the reference path means that noise is introduced into the temporal interference pattern due to 

vibration. As a result, the highest reported measurement precision using this technique was ±0.0015 ps/nm 

(measured on a 0.814 meter long photonic crystal fiber [28]).  

2.4 Spectral interferometry 

In a spectral interferometer, an interference pattern is produced by holding the test and reference arms of an 

interferometer static while tuning the wavelength of a source or receiver. Spectral interferometers are important as 

they have been shown to accurately characterize short-length fiber (<1 m) [28] [29] [33] [34] [35] [36] [37] [38] [39] 

[40] [41], where analysis of the spectral interference pattern yields the dispersion information. Spectral 

interferometers are preferred for the characterization of short length optical fiber and components because they have 

no moving parts that would be susceptible to vibration (as in temporal interferometry). Conventional spectral 
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interferometry is segmented into two categories; unbalanced spectral interferometry (USI) and balanced spectral 

interferometry (BSI). Virtual reference interferometry (VRI) (this work) will be shown to be a hybrid of both; 

combining their advantages while eliminating their individual disadvantages. As a result, more time will be spent in 

this important section since an understanding of conventional spectral interferometry (i.e. USI and BSI) is critical to 

the understanding of VRI. Much of this material will be referenced in later chapters. The following sections focus on 

USI and BSI, whereas the virtual reference interferometer will be introduced in the next chapter once an 

understanding of the advantages and disadvantages of these conventional techniques is clearly established.   

Section 2.4.1.1 discusses USI based techniques that characterize first and second order dispersion by analytically 

differentiating a fit to the phase of a fast Fourier transform (FFT) of the interferogram via Eq. 1-6 and Eq. 1-7. This 

section demonstrates that the problem with this approach is that noise in the measured phase greatly affects the slope 

and curvature of the fit. The conclusion of this section is that the noise in the phase measurement results in different 

first and second order dispersion curves depending on the type of fit chosen, resulting in large errors in the first 

order dispersion and even larger errors in the second order dispersion.   

Section 2.4.1.2 discusses USI based techniques that extract the first order dispersion (group delay) directly from the 

interferogram by using a windowed Fourier transform of sections of the interference pattern. The second order 

dispersion is then obtained by analytically differentiating a fit to the group delay curve using Eq. 1-7. This section 

demonstrates that the noise (scatter) in the group delay is dependent on the window size chosen. Since an optimum 

window size that results in the lowest scatter cannot be known apriori, the scatter cannot be minimized. Furthermore 

since the second order dispersion is obtained by differentiating the fit to the first order dispersion this technique is 

also problematic as the noise will affect the curvature and slope of the fit. This results in a similar conclusion as that 

in the previous section, where the second order dispersion curve depends on the type of fit chosen, resulting in large 

errors in the second order dispersion curves.  

Section 2.4.2 discusses BSI based techniques that are able to measure group delay and second order dispersion 

directly from the interference pattern, without differentiation. This section will show that this capability makes BSI 

based techniques the most accurate for measuring second order dispersion, capable of measuring second-order 

dispersion to 10
-5

ps/nm [13]. It will also show that the disadvantages of using BSI is that it is slow in comparison to 

USI and that it requires a precision variable delay line which must be aligned, stabilized, balanced and isolated from 

the environment. The need for a variable delay line makes the setup and execution of BSI based measurements much 

more difficult than those that use USI. In addition, the dispersion in the physical reference arm must be calibrated 

[42], a process that introduces error into the measurement. 

2.4.1 Unbalanced spectral interferometry  

In unbalanced spectral interferometry (USI) [28] [29] [41], the group delay in the test path is balanced by that of the 

reference path at some wavelength outside the scan range. A spectral interference pattern is produced by sweeping 

the wavelength of the source while using a detector to sample the intensity variation (as a function of the wavelength 
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of the source), as illustrated in Fig. 2-5(a). Alternatively it may be produced by using a broadband source and 

sweeping the wavelength of an optical spectrum analyzer (or spectrometer), as illustrated in Fig. 2-5(b). 

 

Fig. 2-5. Unbalanced spectral interferometry using (a) swept wavelength source (b) swept wavelength 

detection 

The swept source configuration in Fig. 2-5(a) is typically used when high wavelength resolution is required to 

adequately sample the interference pattern. This is necessary when the path length imbalance between the test and 

reference path is large, resulting in a high frequency interference pattern. This can be seen in the expression for the 

interference pattern (in either setup) which is described by  
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 

 

    

 Eq. 2-2  

where it has been assumed, for simplicity, that both reflections have equal magnitudes (i.e. 0 1U U ).  f   is 

the propagation constant in the fiber under test, fL is the length of the fiber under test, airL is the length of the air 

path in the reference arm, 0k is the propagation constant in free space (air path) and 

(Coupler arms) Coupler armsf L     accounts for any length difference between the pigtails of the coupler in the test 

and reference arms, where (Coupler arms)f  is the propagation constant of the coupler arms and 

Coupler arms Coupler arm test Coupler arm refL L L   is the length difference in the coupler arms.  It is important to note that 

this length difference between the coupler arms must be calibrated out of every measurement, which introduces 
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calibration error into any measurements using this setup. One way to eliminate this source of calibration error and 

make 0   in Eq. 2-2 is to make the arms of the coupler equal in length. Since in practice it is difficult to make the 

arms of the coupler exactly equal in length, one solution is to fold the two arms of the coupler into a single optical 

path and employ a common path interferometer configuration, as illustrated in Fig. 2-6(a). In this configuration the 

light is not split into two separate paths since both phase fronts 0U  and 1U  pass through the launch fiber of a fiber 

optic circulator. Notice that this configuration is mathematically equivalent to a Michelson interferometer with equal 

length coupler arms and an air path of length zero, as illustrated in Fig. 2-6(b). 

 
Fig. 2-6. (a) Common path configuration eliminates the calibration error due to imbalance in the leads of a 

coupler and is equivalent to (b) a dual arm configuration (Michelson interferometer) with coupler leads of 

equal length and a zero length air path. Note that for the common path configuration, multiple reflections 

due to the Fabry-Perot effect are ignored due to the low magnitude of the reflections from the fiber facets.  

To simplify the expressions in the techniques for analyzing the spectral interference pattern, the common path 

configuration will be assumed. An example of an unbalanced spectral interferogram is presented in Fig. 2-7. Notice 

that the frequency of the interference varies continuously as a function of wavelength.  
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Fig. 2-7. Unbalanced spectral interference pattern 

In general, there are two approaches used to extract the dispersion information from an unbalanced spectral 

interference pattern, one attempts to directly extract the phase of the interference pattern and the other attempts to 

directly extract the group delay.  

2.4.1.1 Direct phase measurement  

The first approach to extracting dispersion information from an unbalanced spectral interference pattern that is non-

periodic is to attempt to measure the phase directly from the interference pattern from the phase of its Fourier 

transform [43] [44]. Recall that an unbalanced spectral interference pattern may be described by Eq. 2-2. Assuming, 

for simplicity, that a common path configuration is used so that air 0L   and 0  , the interference pattern can be 

simplified as 

         

 

2

Real 02 1 cos 2 f fI U L

 

  

  
  

   
  
  

 Eq. 2-3  

where the phase is given by    . Further simplification of the expression for the interference pattern may be 

obtained by filtering the zero frequency components and normalizing the amplitude so that it may be expressed as 

         

 

Real cos 2 f fI L

 

  

 
 

  
 
 

 Eq. 2-4  

The most common method for extracting the phase     of the interference pattern is to use a Fourier transform 

and examine the phase response [29] [45] [46] [43] [44]. This is done by considering that the interference pattern 

may be equivalently described as  
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     Eq. 2-5  

where 0 is the average spatial frequency of the interference pattern in the spectral scan and  rel   represents the 

relative phase of the non-periodic fringe pattern with respect to this average (i.e. the deviation in frequency as a 

function of wavelength from the average frequency). Applying a Fourier transform on  RealI   gives 
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 Eq. 2-6  

which is illustrated in Fig. 2-8. Note that   is the spatial frequency of the interference pattern. 

 

Fig. 2-8. Fourier transform on  RealI   followed by selection of the frequency content on one side of the 

Fourier spectrum. 

Since the Fourier transform is symmetric across the zero frequency, only one side of the frequency spectrum is 

required.  Selecting one side of the Fourier spectrum only, using an appropriate filter, the expression for  RealI   

simplifies to  
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where  A  is a real function. Applying an inverse Fourier transform on  RealI   gives 
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 RealI   is a complex function with real and imaginary components. It therefore has an amplitude and phase   

          Real RealI I      Eq. 2-9  

where  
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4

A
I I I


    


     Eq. 2-10  

The magnitude spectrum  RealI  is not used in this analysis as it does not contain the phase information. The 

phase of  RealI  may be obtained as   
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 Eq. 2-11  

Therefore from this analysis the phase of the spectral interference pattern  RealI  can be determined by 

          02rel            Eq. 2-12  

The problem when this approach is used for the measurement of dispersion, however, is that multiple derivatives of 

the phase are required to extract first and second order dispersion from the phase [29]. For example, Eq. 1-6 shows 

that to extract the group delay from the phase requires first order differentiation of the phase. Furthermore Eq. 1-7 

shows that extraction of the second order dispersion from the phase requires a second order derivative of the phase. 

The problem with the need to take multiple derivatives to extract dispersion information from the phase of a real 

interference pattern is the unavoidable presence of noise. Because of the presence of noise in the interference 

pattern, the points in the resulting phase plot also contain noise (scatter). It is therefore not practical to numerically 

differentiate the phase. This means that the measured phase must be fit with an appropriate function and then 

analytically differentiated. For most fiber, the phase is an approximately linear function (curvature of phase is the 

second order dispersion (Eq. 1-7) which is intentionally small in fiber). Using this technique for the measurement of 

dispersion, therefore, requires the fitting of a higher order function (e.g. Sellmeier or polynomial) to phase 

measurement plots that are approximately linear and contain noise. The presence of noise, greatly affects the fit to 

the phase, as illustrated in Fig. 2-9, making the results of the group delay measurements dependent on the choice of 

fit, which results in large errors [46].  
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Fig. 2-9. Simulation of effect of noise on polynomial fit to (a) phase measurements and the resulting effect on 

(b) the group delay measurement (from the fit to the phase measurement). 

Since the second order dispersion is determined from the slope of the group delay curve it is clear that the dispersion 

parameter curve would have even larger error given the large variation in the group delay curves. It is interesting to 

point out, however, that since this technique directly measures the phase, it is the best technique for measuring the 

effective index of the fiber, whereas techniques that measure the first and second order dispersion directly would 

have trouble measuring the effective index since a fit would be required by these techniques to measure the effective 

index. This point is discussed further in Appendix E for the interested reader. The focus of this thesis, however, is to 

obtain the best measurements of the first and second order dispersion.  

To overcome the problems associated with directly measuring the phase, the next section discusses an approach for 

measuring the first order dispersion (group delay) directly from an unbalanced interference pattern.    

 

2.4.1.2 Direct group delay measurement 

One method of directly measuring the group delay via unbalanced spectral interferometry is to employ a windowed 

Fourier transform (USI-WFT) to extract the amplitude spectrum [29] [40] [41] [45] in Eq. 2-7. In this technique, a 

windowed section of the bandwidth is chosen. Taking the amplitude of the Fourier transform (Eq. 2-2 with 

  0   ) results in two peaks that are symmetric across zero frequency (Fig. 2-10(b)). The dependent axis of the 

Fourier transform was converted from index location, m , to spatial frequency using    
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      0 sampling

m

M
   Eq. 2-13  

where M is the number of samples on one side of the zero frequency in the Fourier domain and sampling is the 

sampling frequency of the points in  Realwindow
I  . Using this conversion, the dependent axis the spatial frequency 

plot in Fig. 2-10(b) may be used directly to obtain 0 . Moving the window across the spectrum allows the 

(average) frequency to be obtained as a function of wavelength. Note that this technique assumes that the frequency 

of the fringes within each windowed section is approximately constant (i.e.   0    in Eq. 2-2), which is not 

entirely accurate. 

 
Fig. 2-10. (a) Windowed section of the interference pattern and (b) result of Fourier transform applied on 

windowed section. 

Obtaining 0  from the peak of a Fourier transform and assuming that  

         
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 Real 0cos 2 cos 2
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 Eq. 2-14  

(i.e. the frequency within the windowed section is constant), one may obtain  

        02 2f fL      Eq. 2-15  

Taylor expansion of  f   around a centre wavelength 0  gives 
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Substitution of Eq. 2-16 into Eq. 2-15 gives 
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 Eq. 2-17 

The right hand side of the equation is proportional to  , whereas the only component on left hand side that is 

proportional to   is the 

0

fd

d
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
component, therefore  
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and since  
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this means that   
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 Eq. 2-20 

 Substitution of Eq. 2-20 into Eq. 2-18 gives 
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  Eq. 2-21 

Rearranging the terms  
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The group delay may then be determined from Eq. 1-6 and Eq. 2-22 as 

       
  2

0 0 0
0

2

g f

g

N L

c c

  
     Eq. 2-23 

This technique is better than the phase based technique since it is capable of measuring the first order dispersion 

(group delay) directly from the interference pattern. One problem with this technique, however, is that it assumes 

that the wavelength location of the group delay measurement is the centre of the window. This would be true if the 

interference pattern was truly periodic, however, since the spectral interference patterns are non-periodic as a 

function of wavelength, this is not accurate. As a result, there is uncertainty in the wavelength location of the group 
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delay measurement. This means that the larger the window size the larger the uncertainty in the wavelength location 

of the group delay measurement, as illustrated in Fig. 2-11. 

 

Fig. 2-11. Illustration of the uncertainty between the wavelength at centre of window window  and the 

wavelength  0   where the interference fringe period is measured to be 0   

Another problem with this technique is that second order dispersion cannot be measured directly from the 

interference pattern but must be obtained indirectly from a fit to the first order dispersion (group delay) using Eq. 

1-7. This would not be a problem if the group delay plot could be obtained with high accuracy and low noise. 

However, since the interference pattern contains noise, the group delay plot produced by this technique will also 

contain noise (scatter). This means that the group delay cannot be numerically differentiated but must be fit with an 

appropriate function and analytically differentiated to obtain the second order dispersion. For most fiber, the group 

delay is an approximately linear function (the slope of group delay gives the second order dispersion via Eq. 1-7, 

which is intentionally small in fiber). Using this technique for the measurement of dispersion, therefore, requires the 

fitting of a higher order function (e.g. a second or third order polynomial) to the group delay measurement plot that 

is approximately linear and contains noise. The presence of noise greatly affects the fit and makes the first order 

dispersion measurement from the fit dependent on the choice of fit used. As in the last section this also results in 

large errors [46], as illustrated in Fig. 2-12.  
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Fig. 2-12. Simulation of effect of noise on polynomial fits to (a) group delay measurements and the resulting 

effect on (b) the dispersion × length measurement 

A very important point about this technique is that the noise (scatter) in the group delay plot is not only a function of 

the noise in the interference pattern but also a function of the size of the window used. Choosing a large window 

size increases the width of the spectral peaks in Fig. 2-10 by adding frequency content (interference pattern is non-

periodic due to dispersion), which increases the error in the measured value of 0 . Choosing a small window size 

cannot overcome this issue since this also leads to broadening of the peaks in Fig. 2-10, due to the inverse nature of 

the bandwidth of a signal and the bandwidth its Fourier transform [47]. This means that there is an optimum window 

size that results in the narrowest peak (smallest scatter in the group delay plot) but it cannot be known apriori. The 

result is that the scatter in the first order dispersion (group delay) plot cannot be minimized. The increased scatter 

also affects the fit to the group delay, from which the second order dispersion is obtained (as previously discussed). 

For mathematical rigor and completeness Appendix C.1 formally derives the first order dispersion (group delay) 

resolution (and scatter) in USI. The result of this derivation is that the resolution in USI is dependent on the window 

size used in the Fourier transform. However, since an optimum window size cannot be known apriori, it is 

impossible to maximize the resolution. Later the resolution of USI will be compared to that of BSI and it will be 

shown that the resolution of USI approaches that of BSI only if the optimum window size is known. However, since 

an optimum cannot be known, BSI techniques will be shown to have higher resolution.   

2.4.2 Balanced spectral interferometry 

In balanced spectral interferometry (BSI) [13] [28] [29] [33] [34] [35] [40] [42] [48] the group delay in the test arm 

of an interferometer is balanced by that of the reference arm at a wavelength within the spectral scan, as illustrated 

in Fig. 2-13. A balanced interference pattern has a large central peak at the balance point (wavelength) 0 , with the 

frequency of the interference pattern increasing on both sides.  
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Fig. 2-13. Schematic of a balanced spectral interferometry experiment 

An important part of measurements based on balanced spectral interferometry (will also be used for VRI) is the 

pattern recognition process used to determine if a particular interference pattern is acceptable (i.e. balanced within 

the scan range and with a high enough signal-to-noise ratio, etc). Fig. 2-14(a) shows the interferogram with peaks 

(marked with blue crosses) superimposed and valleys (red squares) in the interferogram. The pattern recognition 

process begins with measuring the period between either all the peaks or all the valleys in the interferogram. This 

process produces a plot of the period between peaks or valleys. The period plot has either a single maximum point or 

two points that are very close in magnitude. The period of the peaks and valleys are shown in Fig. 2-14(b). The 

period of the valleys trace the first acceptable pattern and the period of the peaks trace the second.  

 

Fig. 2-14.  Pattern with a single maximum (in red) superimposed with a pattern with two maxima (in blue) 
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It is not always easy to distinguish between the two types of interferograms algorithmically. One method to 

distinguish between the two cases is to compare the difference between the largest and second largest period to the 

difference between the second largest and the third largest period in Fig. 2-14(b). If the difference between the 

largest and second largest period is greater than the difference between the second largest and third largest period, 

then the pattern is that of the single maxima (red squares). Otherwise the pattern is that with two maxima (blue 

crosses). Determining which pattern is correct is critical to the dispersion measurement, since it determines the 

wavelength location of the measurement. If the pattern has a single maxima then the location of 0  is determined 

using the wavelengths corresponding to the second, third, fourth and fifth largest periods. If the pattern has two 

maxima, then the location of 0  is determined from the wavelengths corresponding to the first, second, third and 

fourth largest periods. Regardless of which four wavelength locations are chosen (i.e. 2 1 1 2, , ,      in Fig. 

2-14(a)), the location of 0  is determined from the average of these four wavelengths converted to the frequency 

domain where the interference pattern is symmetric around 0  as   

 

1

2 1 1 2
0

1 1 1 1

4

   




    
  
 

 Eq. 2-24 

Once the pattern recognition process has determined that a particular interference pattern is useable and locates the 

balance point, the first and second order dispersion can then be extracted from the interference pattern. Since the 

balancing of the group delay in the test and reference paths effectively cancels the first order dispersion (large linear 

portion of the phase) in the test path, the spectral interference pattern may be used to obtain both first and second 

order dispersion separately and directly from the interference pattern. To demonstrate this mathematically, assume 

for simplicity that the arms of the coupler are exactly the same length (i.e. 0   in Eq. 2-2), that the dispersion of 

the lens in the reference path may be ignored and that the rest of the reference arm is a free space variable delay line 

(with a length that may be varied using a precision translation stage), as shown in Fig. 2-13. The interference pattern 

produced by the reflections 0U  and 1U  was described by Eq. 2-2, where setting 0  this equation simplifies to   

         
2

Real 2 0 1 cos 2 f f o airI U L k L        Eq. 2-25 

Recall that  f   is the propagation constant of the fiber placed in the test path and fL  is its length,  ok   is the 

propagation constant in free space and airL   is the length of the air path (free space) in the reference arm. The phase 

of the interference pattern is therefore   

       2 f f o airL k L        Eq. 2-26 

The propagation constant of the fiber f  is related to the effective index 
feffn  via   
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      
2

f ff o eff effk n n


   


    Eq. 2-27 

Taylor expansion of the effective index around the wavelength 0  gives 

    
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       Eq. 2-28 

Collecting terms in Eq. 2-28 where  

   
0

0 0 0
f

f
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g eff

dn
N n

d


  


    Eq. 2-29 

followed by substitution of Eq. 2-29 into Eq. 2-27 gives 
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  Eq. 2-30 

At the balance point, illustrated by 0 in Fig. 2-13 and Fig. 2-14 the group delay in the test path is equal to that in 

the reference path because the phase function in Eq. 2-30 is minimized at 0 (i.e. 
0

0d d
 

 


 ) so that  

 0g f airN L L   Eq. 2-31 

where the group delay is related to the optical (group) path length using both Eq. 2-31 and Eq. 1-6. This means that 

the first term in Eq. 2-30 is zero. With the first term set to zero, the large linear part of the phase is removed, leaving 

only the higher order terms in Eq. 2-30.  The 
0

feffdn d


 term may also be removed from the expression by taking 

the phase difference between two points in the interferogram (i.e. peaks or valleys) with a known phase separation 

(illustrated in Fig. 2-14). For example, Using Eq. 2-30, an expression for the phase separation between a peak or 

valley at m  and a peak or valley at n results in  
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    

 

  Eq. 2-32 

where m n  is the number of peak-to-valley or valley-to-peak transitions between m  and n , which are both on 

the same side of 0 . Note that m  is chosen to be the peak or valley that is furthest from 0 . What is important is 
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that Eq. 2-32 contains only the higher order terms and may be used to solve for 
0

2 2

feffd n d


  which gives the 

second order dispersion directly from the interference pattern via Eq. 1-7.  

The first and second order dispersion may then be plotted as a function of wavelength by varying the length of the 

air path (variable delay line) by a small well known incremental amount and re-scanning the interference pattern. 

This changes the length of airL  and shifts the balance point 0  to a new wavelength where the first and second 

order dispersion can be measured again. Various methods for extracting first and second order dispersion using Eq. 

2-31 and Eq. 2-32 are now discussed.  

First order dispersion may be extracted using Eq. 2-31 if the air path length airL (or alternatively the change in the 

air path length, airL ) of the reference is known with high precision. By varying the length of airL , a plot of 0  vs. 

airL  may be produced. If the value of airL  is known absolutely then it can be converted to absolute group delay via  

 
 0

0

g fair
g

N LL

c c


      Eq. 2-33 

Alternatively, if airL  is not known absolutely then the incremental changes from a reference length (i.e. airL ) can 

be used to produce a relative group delay plot via  

 
 0

0

g fair
g

N LL

c c


 


     Eq. 2-34 

For this to be accurate, a precision translation stage is required. In this type of measurement, airL  is the independent 

parameter (known) and 0  is the dependent parameter (unknown).  

The standard method for extraction of the second order dispersion from the balanced interference pattern was first 

demonstrated in [13]. In this method Eq. 2-32 is used to obtain a system of equations using the phase difference 

between peaks and/or valleys (i.e. 1  and 2  on the right side of 0  and to 1  and 2  on the left side of 0  in 

Fig. 2-14).  Neglecting the expansion terms above 
0

3 3

feffd n d


  allows this system to be solved with two 

equations. Using the phase differences illustrated in Fig. 2-14, the system of equations may be given by    
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Eq. 2-35 

Although it is possible in principle to solve for the higher order terms by adding more equations to the system (i.e. 

selecting more pairs) it is generally not necessary in practice since the noise in the interference pattern typically 

makes these terms impossible to extract. The system of equations may then be written in the Matrix form  
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 

  Eq. 2-36 

Where the parameters p, q, r and s are determined by locating 1 , 2 , 1  and 2 . Eq. 2-36 may be solved explicitly 

by multiplying both sides by the inverse of the square matrix as  
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  Eq. 2-37 

Since we are typically only interested in calculating the second order dispersion (the dispersion parameter × length) 

we are interested in the 
0

2 2

feffd n d


 term which is given by.  

 0

2 2

2feff f

s q
d n d L

ps qr






  Eq. 2-38 

The second order dispersion × length can then be found be found by substitution of Eq. 2-38 into Eq. 1-7 which 

results in  

 
 

0
0

2
f

s q
D L

c ps qr





 


 Eq. 2-39 

This matrix approach is typically useful when the effect of the third order dispersion term 
0

3 3

feffd n d


 is non 

negligible and its effects must be included in the calculation of second order dispersion. Typically, however, the 
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effect of the third order dispersion is many orders of magnitude smaller and it can be ignored. Alternative dispersion 

extraction techniques with a high immunity to noise in the interferogram (which require third and higher order 

dispersion to be negligible) are discussed in Appendix B. The ability to extract first and second order dispersion 

(group delay and dispersion parameter) directly from the phase of the interference pattern gives balanced spectral 

interferometric measurements a precision of 0.00007 ps/nm [13], which is the best precision of all interferometric 

measurement techniques. This makes BSI the preferred method for characterizing short-length optical components 

[19]. The main problem with BSI, however, is the need for a variable (free space) delay line with precision 

translational control. An example of a free space optical delay line (that I built) is shown in Fig. 2-15.  

 

Fig. 2-15. Free-space variable optical-delay-line with precision translation stage. Optical path length varied 

using precision translation stage. The folded optical beam path is illustrated in red, the translation is 

illustrated in green, the lens is drawn as an overlay to the image in blue and the mirrors are drawn as an 

overlay in orange.   

The type of free space optical delay line required in balanced spectral interferometry is costly, difficult to setup and 

time consuming to operate. Its high cost comes from the need for precision control of the free space optical path. 

The need for precision control comes from the necessity to vary the optical path length of the reference by small, 

well controlled increments. This is because the plot of the group delay relies on accurate knowledge of the position 

(or relative change in position) in the reference path length. The increments must also be small so that the change in 

the balance point wavelength is small enough that it does not move outside the scan range too quickly (i.e. so that 

several points can be obtained). For this reason, a precision (optical grade) translation stage is required, which can 

be quite costly. The free space optical delay line is also very difficult to set up because the beam path must maintain 

its alignment as the position of the translation stage is varied. Additionally, the fiber from the coupler arm must be 

placed precisely at the focal point of the lens; otherwise the beam will diverge/converge and will not couple back 

into the fiber on the return path. The alignment of the variable reference path alone is an incredibly difficult practical 

problem to solve. This is because there are two degrees of freedom (polar angle and azimuth angle) for every lens or 

mirror in the delay line. Even if a folded optical path (shown in Fig. 2-15) is not used (i.e. on a long optical table in a 

lab setup) there would still be four degrees of freedom that must be maintained over the entire travel path. Note that 

this is another reason for the high cost of the translation stage since its must track perfectly straight (low deviation 

tolerance in the manufacturing process). For a commercial delay line, which must be folded to fit within a small 
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package (box) (as shown in Fig. 2-15), this difficulty is further exacerbated by the additional mirrors required. For a 

single fold in the optical path (shown in Fig. 2-15), five mirrors are required, in addition to the lens. This means that 

there are 12 degrees of freedom to the alignment. In addition to the high cost and difficult setup, balanced spectral 

interferometers require a new spectral scan of the interference pattern (new balance point) for every point 

(wavelength) desired in the dispersion plot. This can be quite a time consuming, especially when large numbers of 

data points are required. The time consuming nature of this process means that the reference path must be sealed 

(sometime hermetically) to prevent changes in temperature, pressure or air flow from affecting the results.   

The translation stage also has a physical limit on the smallest increment it can vary the optical path length (and 

accurately resolve) in the path length of the reference. This limits the smallest spacing between measured points in 

the first and second order dispersion plots. The reason for this is that the balance point 0  is varied by changing the 

length of the reference path via Eq. 2-31 and scanning the interference pattern. The relationship between the smallest 

increment in the reference path and the spectral change in 0  may be found by substitution of Eq. 2-29 into Eq. 

2-31 and differentiation of both sides of Eq. 2-31 with respect to  , followed by substitution of  Eq. 1-7 into the 

result as      

   

 

 

0 0

0

0

0 0

2

0 2

0

f

f

f

gair
f

eff

eff f

eff

f

f

dNdL
L

d d

dnd
n L

d d

d n
L

d

cD L

 





 

 
 








 
  
 
 

 
 

  
 
 



   Eq. 2-40 

Therefore the change in 0  with respect to the change in airL  is given as 
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d
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
    Eq. 2-41 

Therefore the change in the location of 0 is related to the change in air path as 

   
 0

0

1
air

f

d dL
cD L




    Eq. 2-42 

Since conventional balanced spectral interferometers are in a dual arm configuration, the dispersion in the reference 

path must be calibrated. The source of this error could be due to the fact that the coupler arms (see Fig. 2-13) cannot 

be cut to exactly the same length or due to the dispersion of the lens in the reference arm, which may not be 

negligible. This need for calibration introduces calibration error into measurement results.  
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Another important limitation of techniques based on balanced spectral interferometry is that to locate the balance 

point 0 , at least one peak and one valley must be present within the bandwidth of the scan on each side of 0 , as 

described by Eq. 2-24. A minimum of two points on each side of the balance point are also required to measure the 

second order dispersion directly from the balanced interferogram, as described by Eq. 2-37. Since these phase points 

must be present in the scan bandwidth for a dispersion measurement to be possible, there is a minimum bandwidth 

required for a dispersion measurement to be possible using balanced spectral interferometry. The minimum 

bandwidth is the separation between 2 and 2 in Fig. 2-16. 

 

Fig. 2-16.  Minimum bandwidth required in balanced spectral interferometry 

The next part in this section develops an expression for the minimum bandwidth required in a balanced spectral 

interferometric measurement. The derivation begins by ignoring the third and higher order terms in Eq. 2-32 , so that 

the phase separation between 1  and 0  in Fig. 2-16 can be described by  
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Substitution of Eq. 1-7 into Eq. 2-43 results in  
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If we assume that 1 0 0    then 2
1 0 0   and Eq. 2-44 may be used to solve  1 0   as  

  
  
0

1 0 1/2

0fcL D
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 


          Eq. 2-45 

Using Eq. 2-32 and again ignoring the expansion terms above the second order, an expression for the known phase 

separation between 1  and 2  can be expressed as   
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  Eq. 2-46 

Substitution of the result in Eq. 2-45 into Eq. 2-46 and assuming 2 0 0    so that 2
2 0 0    results in an 

expression for the maximum wavelength spacing  2 0   given by  
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Thus a conservative estimate for the minimum bandwidth required is given by 
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The need for a minimum bandwidth has an effect on the resolution of this technique as well as the scatter in the 

group delay plot. For mathematical completeness and rigor, the derivations for the resolution and scatter in BSI are 

developed in Appendix C.2. Furthermore, in Appendix C.3 the resolution in USI is compared to that in BSI and it is 

shown that the resolution in USI only approaches that in BSI if the optimum window size is chosen. However, since 

the optimum window size cannot be known apriori, BSI techniques generally provide higher resolution (lower 

scatter) than USI techniques. Low scatter in the group delay curve produced via USI is important since the second 

order dispersion can only be measured via curve fitting (since cannot be measured directly) followed by analytical 

differentiation [29] [40] [41] [45] and since the scatter greatly affects the slope of the fit. This is the key problem 

with all USI based techniques and is one reason why experimentalists go to the trouble of setting up a reference path 

so that BSI can be used. It should also be noted here that the comparisons USI and BSI will also apply to USI and 

virtual reference interferometry (VRI) (introduced in the next chapter) since the virtual reference will take the place 

of the physical reference in BSI making the two techniques equivalent.  

2.5 Summary & comparison 

This section summarizes and compares all of the conventional techniques used for chromatic dispersion 

characterization. For both the time-of-flight (TOF) and modulation-phase-shift (MPS) techniques, the minimum 

device length that can be characterized is limited by the speed of the electronics. Because of cost considerations this 

typically limits the minimum device length from several tens to hundreds of meters. For shorter length 

characterization, however, interferometric techniques are requierd. Temporal interferometric (TI) techniques are not 

typically preferred due to the need to move the variable delay line while scanning the spectrum as this introduces 

vibrational noise into the interference pattern. The preferred techniques for characterizing short length are based on 

spectral interferometry, since the test and reference paths are held stationary during the scan, so that there is no 

vibrational noise added to the interference pattern. Spectral interferometric techniques can have test and reference 

paths that are either unbalanced or balanced. Unbalanced techniques (USI) typically involve the use of a Fourier 

transform in which either the amplitude or phase spectrum is used to extract dispersion. Techniques that extract the 
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phase of the interference pattern are required to fit the phase measurement with an appropriate function to measure 

the first and second order dispersion via analytical differentiation of the fitted curve. The problem with this 

technique, however, is that the presence of noise in the phase plot makes the results obtained dependent on the 

choice of fit (resulting in large error). Techniques that use the amplitude spectrum of a Fourier transform (via USI-

WFT) to directly measure the group delay do not require a fit and are generally more accurate for the measurement 

of the first order dispersion (group delay) than those that measure the phase. These techniques, however, must 

employ a windowed Fourier transform to extract the group delay curve as a function of wavelength. However, since 

there is no way to determine the optimum window size that results in the highest resolution in the group delay curve, 

the scatter in the group delay curve cannot be minimized. Since the second order dispersion is extracted by fitting to 

the group delay curve, the second order dispersion curve produced also depends on the choice of fit (resulting in 

large error). This leaves balanced spectral interferometric (BSI) measurements, for which the first and second order 

dispersion may be obtained directly from the interference pattern and the resolution is inherently optimized (low 

scatter in the group delay curve). The trouble with this technique, however, is that the need for a reference makes 

implementation costly, difficult and time consuming.  

Table 2-1 compares the typical precision of various dispersion measurement techniques. It demonstrates that 

balanced spectral interferometry gives the highest precision, since dispersion is measured directly from the 

interference pattern, but is the most difficult to set up and operate.   

Table 2-1: Typical precision for each dispersion measurement technique 
 

Technique  Typical precision  Comment References  

TOF  
10

-1
  ps  nm

-1

 
System cost inversely proportional to length. 

Need tens to hundreds of meters. 

[19] [20] 

MPS 
10

-1
 ps  nm

-1 

 
System cost inversely proportional to length. 

Need tens to hundreds of meters.  

[22] [24] 

TI  
10

-3
 ps nm

-1

  
Noise due to translation of mirror. 

Indirect measure of second order dispersion. 

[48] 

USI  
10

-3 
ps nm

-1

 
Indirect measure of second order dispersion. 

Fit to phase or group delay can have large error. 

[29] [41] [13] 

BSI  
10

-5 
ps nm

-1

  
Direct measure of second order dispersion. 

Best precision. 

Difficult setup, operation and high cost delay line. 

[13] 

 

Table 2-2 summarizes several performance metrics, including the ability to measure short length fiber, the ability to 

directly measure second order dispersion, experiment run time, experiment difficulty and the need for calibration.  
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Table 2-2: Comparison of several performance metrics for each dispersion measurement technique. 

Technique 

Measures 

short 

length? 

Minimum scatter in 

group delay plot 

Directly 

measures 

second order 

dispersion? 

Fast 

(single scan) 

Low 

difficulty 

setup and 

operation 

No 

Calibration 

TOF     √  √   

MPS    √ √   

TI  √    √  √   

USI  √   √ √ √
*
 

BSI  √ √ √    
* Possible using the common path configuration 

The next chapter introduces a new technique, called virtual reference interferometry, which combines the 

advantages of unbalanced spectral interferometry and balanced spectral interferometry. This new technique is a 

hybrid between the two that is capable of directly measuring second order dispersion by producing a balanced 

spectral interference pattern using a single spectral scan (fast) without the need for a physical reference path (no 

calibration) or variable delay line.  
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Chapter 3.  
Virtual reference interferometry 

Virtual reference interferometry (VRI) is introduced in this chapter and used to characterize chromatic dispersion in 

short length (<1 m) fiber and optical components. This chapter develops a detailed mathematical description of the 

technique along with an analysis of its parameters and constraints as a basis for comparison with conventional BSI. 

Also presented are several unique or important capabilities of VRI, including the ability to reduce the bandwidth 

required for a measurement, to measure components in cascade and to measure both narrowband and ultra-short 

devices. The chapter concludes with experiments that validate the theory and important capabilities. The validation 

experiments (characterizing well-known dispersion standards) demonstrate that the technique has a group delay 

measurement accuracy (relative to simulation using manufacturers specifications) on the order of 10
-3 

ps/m 

(<0.0001% relative error) and a second order dispersion (dispersion-length product) measurement accuracy on the 

order of and 10
-5 

ps/nm  (<0.5% relative error). Measurement precision (relative to linear fit) in the second order 

dispersion is demonstrated to be on the order of 10
-5

 ps/nm (<0.15% relative deviation).  

3.1 Introduction & motivation 

An understanding of chromatic dispersion is of practical importance to the design of photonic components, systems 

and devices as discussed in Chapter 1. Recall from Chapter 2.4, that spectral interferometric techniques are preferred 

for characterizing short length specialty fibers and optical components, where long length samples are too costly or 

unavailable [19]. Among the conventional interferometric techniques discussed in Chapter 2.4, BSI [13] [28] [29] 

[34] [48] [42] was shown to have the highest accuracy for measuring both first and second order dispersion (capable 

of direct measurements). BSI, however, was shown to be more difficult and time consuming to set up and more time 

consuming to operate compared to USI [28] [29] [41], which could complete a measurement in a single scan. Recall 

from Eq. 2-1, that high accuracy (low scatter) is especially important in short-length, low second order dispersion 

fibers and optical components, where the magnitude of the first and second order dispersion can be quite small.   

Virtual reference interferometry (VRI) [49] is introduced in this chapter to enable direct (accurate) measurement of 

first and second order dispersion (like BSI) without the need for a physical reference path and in a single scan (fast) 

measurement (like USI). Since VRI produces interference patterns equivalent to BSI it is effectively an alternative to 

BSI that does not require a physical reference path and can be performed in a single scan (like USI). It achieves this 

by introducing a paradigm shift in the concept of what a reference is. In BSI the reference is the phase of the wave 

front that traverses a well known reference path. It is therefore a phase reference. The reference used in VRI, 

however, is not a phase reference but an interferogram reference. The reason that an interferogram can be a 

referenced is that it records a phase difference between two points in space. As a result, if the phase difference 

between two points in space is well known (i.e. simulated to produce a virtual interferogram), it is possible to use 

this phase difference to compare (as a reference) with an unknown phase difference (i.e. interferogram produced by 

a physical phase difference). Therefore the resulting interference pattern produced will be a second order 
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interference pattern that gives the phase difference between the two sets of phase separations. The amplitude 

modulation of this second order interference is equivalent to that produced in BSI when the group delay difference 

in the simulated interferogram is equal to that in the physically generated interferogram. However, since the 

reference is simulated, only a single spectral scan is required to generate dispersion plots (unlike BSI where a new 

scan is required for every point in the dispersion plot). Since the need for a phase difference means that the physical 

configuration of the interferometer is the same as USI but the resulting interference pattern is equivalent to that in 

BSI, VRI is essentially a hybrid between USI and BSI. It combines the advantage of speed (single scan 

measurements) and simplicity (no variable reference path) of USI with the accuracy of BSI for the measurement of 

first and second order dispersion. Furthermore, since the technique produces an equivalent interferogram to that 

generated in BSI, the first and second order dispersion may be extracted directly from the generated interference 

pattern using exactly the same algorithms as those presented in Chapter 2.4.2. Since VRI is equivalent to BSI, all of 

the comparisons between BSI and USI in Chapter 2.4 (i.e. resolution and scatter) also apply to VRI and USI. The 

next section presents the detailed theory of virtual reference interferometry.  

3.2 Theory 

The virtual reference process is a method for extracting both first and second order dispersion directly from the 

spectral interference produced in an unbalanced spectral interferometer. This is achieved using a virtual reference 

path, in a similar manner to that of a physical (real) reference path in BSI. The virtual referencing process, 

summarized in Fig. 3-1 can be divided into four steps, as illustrated in Fig. 3-1.  

 

Fig. 3-1. Block diagram showing the sequential steps used to extract first and second-order dispersion using a 

virtual reference interferometer. Adapted (re-colored) with permission from [50]. 
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The first step is the acquisition of a spectral interferogram (SI) from an unbalanced spectral interferometer (i.e. 

Michelson, Mach Zehnder, Fabry-Perot or common path). The second step is the estimation of the length of the 

virtual reference path using the period of the spectral interferogram acquired in the first step, followed by the 

generation of a virtual spectral interferogram, corresponding to the virtual path length (a simulated free-space cavity 

or interferometer). The third step is the multiplication of the spectral interferogram acquired in the first step with that 

produced in the second step resulting in the generation of a second-order interference pattern. If the virtual path (step 

1) and the test path (step 2) are ‘balanced’ (i.e. the group delays in both paths are equal at a particular wavelength, 

0
  ), then the second-order interference pattern will exhibit a symmetric envelope with a spectrally flattened region 

(Fig. 3-1) centered at the 'balance' wavelength. Since the virtual reference path length determined in the second step 

is only an estimate, numerical variation of the virtual path length is required to balance the test path at a wavelength 

within the scan range. The fourth and final step is to extract the amplitude modulation of the second-order 

interference pattern and to use it to calculate the dispersion. Since the amplitude modulation is equivalent to the 

interference pattern generated by a balanced interferometer with a real reference path, the pattern recognition 

algorithms and the first and second order dispersion extraction techniques discussed in Chapter 2.4.2 (with v airL L

) may be used. Dispersion plots can be produced by repeating steps 3 and 4 at wavelengths within the scan range. 

The steps will be discussed in greater detail in the following sections.   

Step 1 - Acquisition of the interference pattern  

There are a variety of interferometric configurations that may be used to generate a spectral interference pattern. 

Since it is experimentally convenient to use a single-ended measurement, a Fabry-Perot (effects of multiple round 

trips not negligible) or common path (effects of multiple round trips negligible) configuration, shown in Fig. 3-2, is 

often chosen. Note that other configurations such as a Michelson or Mach Zehnder interferometer can work equally 

well with VRI. This single ended common path configuration is possible if a tunable laser source with sufficient 

coherence and wavelength resolution is used as the source. As the wavelength of the tunable laser is scanned, a real 

spectral interferogram (SI) (  RealI  ) is formed at the detector by the reflections 0 U , 1 U  (the reflected field 

amplitudes of the test fiber) and NU  (the field amplitudes of the multiple reflections thereafter). 

 
Fig. 3-2. Schematic for the generation of a real spectral interferogram using a common path (or Fabry-Perot) 

interferometer. An FC/APC (Ferrule connector/angled physical contact) to FC/PC (Ferrule 

connector/physical contact) connection is used as the first reflection point. A virtual cavity (Lv(1)), with a 

simulated group delay separation between V0 and V1 (equal to that in the real cavity (Lf) between U0 and 

U1), is shown in blue. Adapted (re-colored) with permission from [50]. 



Chapter 3:  Virtual reference interferometry www.inometrix.com 37 

 

 

The interference pattern seen at the detector is given in Eq. 3-1.   
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                                                       Eq. 3-1 

where inU  is the amplitude of the input electric field from the tunable laser, 2
oR r  is the reflectivity at the glass-air 

interface (where  or is the amplitude reflection coefficient) and 1l  is the loss factor at the junction between the launch 

fiber and the test fiber. It is important to note that the loss factor does not include the reflection loss, which is 

accounted for by  R  in the expression. Furthermore, for simplicity of this analysis, the fiber is assumed to be lossless 

so that the amplitudes of 0 U  and 1 U  are approximately equal. An imbalance between the amplitude of 0 U  and 1 U  

would result in a reduction in the fringe contrast of  RealI   but have no affect on its phase. The terms f  and fL  

are the propagation constant and physical length of the fiber under test, respectively. Where the propagation constant 

is defined as  
2

f effn


 


  where effn  is the effective index of the fiber under test at a given wavelength,  . If 

the product term with 0l   and 0m   in Eq. 3-1 is added to the product term with 0m   and 0l  , a set of 

harmonics  cos 2 f fN L , is formed (with N  being the order of the harmonic). Cross terms, generated when

  0l m  , result in the same   cos 2 f fN L harmonics. This means that the interference pattern  RealI   is 

essentially composed of harmonics with varying amplitudes and may therefore be simplified as  

    
N 1

cos 2N
Real N f fI A R N L



 



  Eq. 3-2 

where NA  is the magnitude of the N
th

 harmonic. Note that the expressions for NA  are not derived here, since they 

are of little interest as they do not contain the dispersion information and that the frequencies of the first and higher 

order harmonics are independent of  R . If 1R , as in optical fiber, then multiple reflections can be neglected (i.e. 

common path interferometer) and the expression for  RealI   simplifies to  

     2 4
1 2 2cos 2Real in f fI U l R L    Eq. 3-3 

Step 2 – Virtual cavity path-length estimation   

Although the interference pattern produced in step 1 is aperiodic (i.e. period changes with wavelength due to 

dispersion), an estimate of the average period within a window near the centre of the scan range may be used to 
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calculate an initial estimate for the length of the virtual reference path,    v NL , that has a group delay equivalent to 

(i.e. 'balances') the test path that generated  RealI  at a wavelength near the scan range. The group delay of the 

virtual free-space path may be estimated by   

    
 

2

2

centre
v N centre

centre

L N








 Eq. 3-4 

where  1,2,N    round trips in the test fiber, 
centre

 is the wavelength at the centre of the scan range, and 

 centre  is the average period of the interference pattern within a certain wavelength range centered at 
centre

 , 

the centre of the scan range. The average period can be measured directly from the interference pattern or using a 

Fourier transform (as discussed in Chapter 2.4.1).  It is important to point out that this step only provides an estimate 

for the length of the virtual cavity due to the noise in the interference pattern. It can only partially balance the 

interferometer at a wavelength near the scan range. Fine tuning of the virtual cavity will be required in the next step 

to completely balance the interferometer at a wavelength within the scan range. Using the estimated value of  v NL  

from Eq. 3-4, a virtual interference pattern may be generated numerically as  

         0,  2centrevi centrertual N v NI cos k L    Eq. 3-5 

where 0 2 /k    is the propagation constant in free-space. The interference pattern  virtual NI  is equivalent to what 

would be produced by a physical free space cavity with a group delay equivalent to that in the interferometer used to 

generate  RealI   [34] [35]. This effectively means that  1 airvL L  in Eq. 2-31. In practice, typically, 1N   is 

used in Eq. 3-5. A higher value of N  (corresponding to the balancing of multiple round trips) is only used in the 

case of harmonic compression, as detailed later.  

Step 3 – Multiplication and fine balancing 

In this step the interference pattern generated in step 1 is multiplied point-by-point (alternatively added or 

subtracted) with the simulated interference pattern produced in step 2. After filtering out the zero-frequency (DC) 

term in  RealI   and ignoring the sum frequency terms in the result, a second order interference pattern with a low 

frequency amplitude modulation results, as described by 

 

       

  0 1

,  , 

  2 ( )

centre centreSO Real virtual N

N
N f f v

I I I

A R cos N L k L

  



  

 
                                          Eq. 3-6 

This low frequency amplitude modulation in the second order interference pattern is depicted in Fig. 3-3 where 0  

is the wavelength where the phase in Eq. 3-6 is minimized and the group delay in the virtual path (step 2) balances 

that in test fiber (step 1) (i.e.    1 0fg fv NL L ). Note that fine tuning of the virtual reference path length  1vL  is 
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required in this step to balance the test and reference paths within the scan range (so that the balance point of the 

interference pattern 0 , which is illustrated in Fig. 3-3, is observed within the scan bandwidth).  

 

Fig. 3-3. Second order interference pattern in VRI. The finer interference fringes are not resolved in this 

depiction and appear black. Only the envelope (i.e. the amplitude modulation) of the interferogram is of 

interest. Adapted (re-colored) with permission from [50]. 

 

Step 4 – Extracting the phase and dispersion 

The amplitude modulation in Fig. 3-3 is equivalent to the first order interference that would be produced in BSI if 

the length of the physical reference path was the same as the simulated reference path. The phase of the amplitude 

modulation, therefore, provides the information of interest. The amplitude modulation may be extracted from the 

second order interference via low pass filtering. For noisy interference patterns a subsequent curve fitting may be 

used to filter the noise further. Typically a spline fit is used for this purpose. A spline is a curve is produced by 

fitting different sections of a plot with multiple (piecewise defined) polynomials and ensuring that the multiple 

pieces are both continuous and smooth at the points where they connect. The balanced wavelength 0   may then be 

determined using Eq. 2-24 in conjunction with the pattern recognition algorithms described in Chapter 2.4.2 (with

v airL L ). Step 3 is then repeated for each wavelength point of interest, such that  1  vL , which is required to balance 

the interferometer at a given wavelength, is obtained as a function of wavelength. The group delay of the test fiber 

may then be determined using Eq. 2-33 where v airL L  as   
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where  0gN   is the group index of the test fiber, which is related to its effective refractive index, by the relation

   0 0  
o

g eff o effN n dn d


     . Higher-order dispersion can be obtained by numerically differentiating

 0  g   or by directly extracting it from the second-order interference pattern, which has a phase given by 

     . . 0 1 2Amp mod eff f vNk n L L     Eq. 3-8 

The second-order dispersion may then be extracted by measuring the separation between the peaks or valleys in the 

amplitude modulation, exactly the same way as in BSI, as detailed in Chapter 2.4.2 (with v airL L ) and in [13] 

[34].  

3.3 Unique capabilities of VRI 

Although VRI may seem to be simply a method for replacing physical balancing with numerical processes, this 

section describes its unique capabilities and advantages in comparison to BSI. These capabilities include spectral 

compression, the ability to characterize cascaded elements individually and collectively, the ability to characterize 

narrowband devices such as Fiber Bragg Gratings (FBGs), and the ability to characterize ultra-short devices using a 

difference measurement technique.  

3.3.1 Spectral compression 

In optical fiber where 1R  in Eq. 3-6, the magnitude of higher order reflections (multiple round trips) drops off 

significantly. Despite this fact, the harmonics of the first few higher order reflections in  RealI  are usually still 

visible and can be independently referenced by multiplying (or adding/subtracting)   RealI  with an appropriate 

virtual spectral interferogram  virtual NI having a frequency (simulated group delay) equal to one of the higher-order 

harmonics (i.e. balancing the group delay in higher order harmonic N ). For example, virtual referencing of the 

second harmonic   cos 4 ff L  (two round trips in the fiber), can be referenced by multiplication with

  0 2 cos 2 vk L , where    2 12v vL L . Note that in general, the virtual path length is an integer multiple of  1   vL ,       

(    1v N vL NL ) where N  corresponds to the order of the referenced harmonic. Referencing of higher-order 

harmonics ( 1N  ) has the effect of spectrally compressing the amplitude modulation, as shown in Fig. 3-4. More 

specifically, spectral compression refers to the reduction in the spectral separation between 2  and 2 in Fig. 3-4. 

Spectral compression by referencing a higher order harmonic, however, comes at the cost of fringe visibility 

(contrast), as illustrated in Fig. 3-4. The reduction in fringe visibility is due to the reflection loss at the fiber facets 
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which reduces visibility by a factor of 
NR  in the N

th
 harmonic. For uncoated fiber facets (with a low value of  R ) 

only the first and second harmonic typically generate sufficiently high fringe visibilities for extraction of dispersion 

information.  In Chapter 5 a method for compressing the interference pattern, without suffering from a reduction in 

fringe visibility, will be introduced.   

 

(a) 

  

(b) 

Fig. 3-4. (a) Second-order interference pattern produced via virtual referencing of the first harmonic. (b) 

Second-order interference pattern produced via virtual referencing of the second harmonic, resulting in 

spectral compression. Adapted (re-colored) with permission from [50]. 

3.3.2 Cascaded elements 

Another unique feature of VRI is the ability to characterize the dispersion in a cascade of elements, both individually 

and collectively. A cascade of elements in which the multiple reflections within each element can be neglected (i.e. 

by using FC/PC to FC/APC connectors to increase cavity loss), is illustrated in Fig. 3-5.  

 

Fig. 3-5. Cascade of N elements with FC/PC to FC/APC connections as the reflection points. Used with 

permission from [50]. 

The interference pattern seen at the detector is described by  

     1

2

22 2
Real 1

1

1
m

f k f kk

N
j Lm

in

m

I U R l e







     Eq. 3-9 

where  f k  is the propagation constant and  f kL  is the physical length, of the k
th

 fiber in the cascade (i.e. between 

reflections Um and Um-1, where m is the reflection number). The magnitude of each successive reflection is reduced 

by the term 2
1

ml . For a better understanding of the process an analytical expression for a two element cascade using 

Eq. 3-9 is given by  
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 Eq. 3-10 

In this equation, there are three harmonic components corresponding to the first cavity, second cavity and to the 

collective cavity formed by the combination of the first and second cavity. The first cavity, between reflections 0U  

and 1U , generates the harmonic component with the largest amplitude of 2
1  2( )l . The second cavity, between 

reflections 1U and 2U , generates the smallest amplitude since it is multiplied by 6
12( )l . The cavity formed by the 

first and last reflection, 0U and 2U , in the cascade generates frequency content with amplitude 4
12( )l . Each cavity 

in the cascade produces an individual balance point (when the virtual reference has a length that balances the group 

delay in the cavity). Each cavity can be virtually referenced independently and its dispersion information extracted 

accordingly (using the dispersion extraction algorithms described in Chapter 2.4.2 (with v airL L )). It is important 

to point out that the cavities must be sufficiently different in length so that the balance points do not overlap. In the 

System Parameters section of this chapter, an expression for the minimum spectral separation will be developed.  

3.3.3 Characterization of narrow-band devices 

In this section, the ability to characterize the dispersion in a narrow-band fiber optic component, namely a Fiber 

Bragg Grating (FBG) is discussed. A schematic diagram for the measurement of a Fiber Bragg Grating is given in 

Fig. 3-6.  

 
Fig. 3-6. Schematic diagram for the measurement of the dispersion of a Fiber Bragg Grating. The virtual free 

space path (cavity) with equivalent group delay is shown in blue. Adapted (re-colored) with permission from 

[50]. 

By using an FC/PC to FC/APC connector at the first reflection point the higher order reflections may be suppressed 

such that the spectral interference produced at the detector may be described by  
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 Eq. 3-11 

where     42 2
0 1 GA r l r    ,   2

0 12 GB r l r   and Gj
Gr e

  is the complex reflection coefficient of the grating. 0r  

is the amplitude reflection coefficient of the fiber. Fig. 3-7 illustrates a sample spectral interferogram generated by 

the setup in Fig. 3-6, showing the DC component and the higher frequency content.  

 

Fig. 3-7. Sample interference generated by the setup in Fig. 3-6. Adapted (re-colored) with permission from 

[50]. 

The dispersion information of the grating is extracted by multiplying  RealI   with the virtually generated SI 

pattern, expressed by 

       01 1cos 2virtual vI k L   Eq. 3-12 

In this case,  1vL  is the virtual reference path length with a group delay equal to that of both the fiber and the 

grating combined (i.e. the cavity formed by the reflections U0 and U1). The result of point-by-point multiplication of 

Eq. 3-11 and Eq. 3-12 is illustrated in Fig. 3-8 and described by Eq. 3-13.  

 

Fig. 3-8. Virtually referenced (and balanced) interference pattern generated by the setup shown in Fig. 3-6. 

Adapted (re-colored) with permission from [50]. 
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 Eq. 3-13 

The resulting low frequency amplitude modulation contains information about both the fiber and the grating and the 

phase of the amplitude modulation is given by  

  . . 1  2
2

f

effG G

Amp mod o eff v

n L
k n L L
 

   
 

 Eq. 3-14 

where 0G effG Gk n L   and effGn  is the equivalent effective index of the grating and GL  is the length of the grating. 

Taylor expansion of  effGn  and effn  gives Eq. 3-15 and Eq. 3-16. 
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It is important to mention that the approximation made in Eq. 3-16 is valid over the narrow bandwidth of the grating 

where  effn   in a fiber can be considered linear. The higher-order expansion terms must be included in the 

expansion for the grating (  effGn  ), however, as shown in Eq. 3-15. The result of substituting Eq. 3-15 and Eq. 

3-16 into Eq. 3-14 is the expression for the phase given in Eq. 3-17.    

 

           

   

0 0

0 0

.  . 0 0 1

2 32 3
0 0

2 3

2
2

4
2

4
2 2! 3!

G
Amp mod o fg Grating g fiber v

eff effG G

effG ef G

f

fG

L
k N N L L

dn dn L
L

d d

d n d nL

d d

 

 

   


 

   


  

  
    

  

 
  
 
 

 
    

  
 

 
Eq. 3-17 

where    0g fiberN   and    0Gratg ingN  are the group index of the fiber and grating, respectively. GL is the 

physical length of the grating and fL is the length of the fiber. Note that since the length of the virtual reference 
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 1vL  is chosen so that          0 01  
2

G
v g Grating g fiber f

L
L N N L 

 
 

 
    the first term in Eq. 3-17 is zero. It also 

means that the sum of the group index of the grating and fiber are known values since they are equal to  1vL  at the 

balance wavelength, 0 . As a result, the group delay of the fiber and grating may be plotted as a function of 0 by 

locating the balance wavelength for a given value of  1vL . The second and higher order dispersion may also be 

extracted indirectly via numerical differentiation of the group delay plot or directly by measuring the phase 

difference between peaks and/or valleys in the amplitude modulation as described in Chapter 2.4.2 using 
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Eq. 3-18 

3.3.4 Ultra-low dispersion measurements 

This section describes a technique for the characterization of devices with a dispersion length so small that the 

minimum bandwidth required for its characterization exceeds the bandwidth of the source min sourceB B (note that 

an alternative approach for solving this problem will be discussed in Chapter 5). First a longer, higher dispersion 

fiber that can be characterized with the available bandwidth is measured. This fiber is then spliced to the short 

dispersion element (for which the bandwidth of the source is insufficient to measure the dispersion) as illustrated in 

Fig. 3-9. The two combined elements are then characterized. The dispersion of the short element can then be 

extracted from the difference between the second measurement and the first.  

 

Fig. 3-9. Schematic diagram for Ultra-Low dispersion measurement made using two independent 

measurements. Used with permission from [50]. 

The shortest dispersion length that can be measured using this technique depends on both the accuracy of the 

individual measurements and on the magnitude of thermal changes in fiber length between scans. It is important to 
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point out that although this technique could also be used with a balanced interferometer it would be more susceptible 

to the thermal variation between scans since each point in the individual dispersion plots would require a separate 

scan (increasing the time required to produce each plot). This ultimately increases the length of the smallest 

dispersion length that can be measured in comparison to VRI (where each plot is generated quickly from a single 

scan [49]). Another important point to note is that if there is a reflection of sufficient magnitude at the splice point, 

the interference pattern produced looks like a two element cascade. In this case, results can be obtained from a single 

measurement by taking the difference between the combined cavity and that of the longer element to extract the 

dispersion of the short element. In this case there is no possibility for thermal fluctuation between scans since only 

one scan is required, resulting in superior measurement accuracy.  

3.4 System parameters  

In this section, the system parameters are derived for VRI to illustrate both the advantages and limitations of the 

technique in comparison to physically balanced interferometers. The parameters discussed include the minimum 

required source bandwidth, the minimum separation required between multiple balance points, the measurable 

bandwidth of the dispersion plots, the minimum fiber length, and the maximum fiber length that can be 

characterized (using the common path or Fabry-Perot configuration).    

3.4.1 Minimum required source bandwidth  

In order to locate the balance point to measure the first order dispersion or to be able to measure the second order 

dispersion from the period of the peaks and valleys surrounding 0 , as discussed in Chapter 2.4.2, there must be at 

least two known phase points (e.g. 1  and 2 ) on each side of 0  (Fig. 3-3). This minimum bandwidth can be 

calculated from the phase separation between 2  and 0 in Fig. 3-3. To derive an analytical expression for the 

phase separation, one must start with Eq. 3-8 and Taylor expand  effn  as described in Chapter 2.4.2. This results in a 

phase expression given by  
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  Eq. 3-19 

If the third and higher order terms in the expansion are ignored, the phase separation between 1  and 0  in Fig. 

3-3can be described by   
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Substitution of Eq. 1-7 into Eq. 3-20 results in   
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If we assume that 1 0 0    then 2
1 0 0   and Eq. 3-21 may be used to solve for  1 0   as   
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
   Eq. 3-22 

where N is the referenced harmonic. Using Eq. 3-19 and ignoring the expansion terms above the second order, an 

expression for the known phase separation between 1  and 2  can be expressed by   
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  Eq. 3-23 

Substitution of the result in Eq. 3-22 into Eq. 3-23 and assuming 2 0 0   so that 2
2 0 0   results in an 

expression for the maximum wavelength spacing  2 0   given by  
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Thus a conservative estimate for the minimum bandwidth required is given by  
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f
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Comparison of Eq. 3-25 with Eq. 2-48 shows that an advantage of VRI is that minB  can be divided by 1 2N , by 

referencing higher order harmonics, which is not possible in BSI.  

3.4.2 Minimum separation between balance points 

When two cavities in a cascade have similar lengths the spectral separation between the balance points is small. In 

order to ensure that the balance points can be uniquely resolved there must be sufficient spectral separation between 

the modes. The minimum spectral separation between two modes with balance points 
10  and 

20 is given by the 

sum of half the minimum bandwidth required by the first element 
1

1
min2

B  and half the minimum bandwidth required 

by the second element 
2

1
min2

B as illustrated in Fig. 3-10.  
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Fig. 3-10. (a) Simulated second order interference pattern and (b) the result of low-pass filtering to extract the 

balance wavelengths separated by the sum of half the minimum bandwidth required by each element. Inset 

above (a) shows a magnified spectral region around a balance wavelength. Adapted (re-colored and re-

organized) with permission from [51]. 

The minimum spectral separation between the two balance points 
10  and 

20 produced by cascaded elements of 

similar length is given by  
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Eq. 3-26 

where  0
ˆ

wwD   and 
wf

L are the second-order dispersion and length of element w  and c  is the speed of light.  

3.4.3 Measurable bandwidth of the dispersion plots 

The measurable bandwidth is determined by the difference between the bandwidth of the source and the minimum 

bandwidth required and is given by    

  
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0

1/2

0

6meas source min source

f

B B B B

NcD L




     

Eq. 3-27 

Note that the minimum bandwidth is divided (reduced) by the 1 2N  term. This shows that using compression, the 

measurable bandwidth can be increased substantially in comparison to BSI based measurements [34].  

3.4.4 Spectral resolution of dispersion plots  

In balanced spectral interferometry (Chapter 2.4.2) the wavelength separation between measured points in the 

dispersion plots (both first and second order dispersion) depends on the minimum step size of the translation stage in 

the reference path since the balance point 0  is varied by changing the length of the reference path airL  in Eq. 2-31. 
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In VRI, however since the length of the reference path is simulated (i.e.  air v NL L ), arbitrarily small changes in 

path length can be used to make the separation between adjacent measured points as small as desired, to the limit of 

the wavelength resolution in locating 0 . Therefore Eq. 2-42 can be re-written for VRI as 

    0
0

1
v N

f

d dL
cD L




  Eq. 3-28 

3.4.5 Minimum fiber length 

The consequence of the need for a minimum bandwidth and the fact that the minimum bandwidth bust be less than 

the available bandwidth of the source, (i.e. bandwidth of  RealI  ) is that the shortest length of fiber that can be 

characterized is limited. This limitation can be derived by asserting that the minimum bandwidth be less than that of 

the source and substituting in the expression for minB . Since  min sourceB B  this results in the expression for the 

minimum fiber length   
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The ability to divide by the compression factor  N  allows for the measurement of smaller devices than with 

physically referenced interferometers [34].  

3.4.6 Maximum fiber length 

The physically generated interference pattern  RealI   must be resolved in order to extract the amplitude 

modulation. If the interferometer used to generate the interference  RealI  is modeled as a Fabry-Perot cavity, then 

wavelength resolution ( Δ ) needed to resolve the raw interference pattern is given by  
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
    Eq. 3-30 

where M  is the number of data points per period in  RealI  . Although 2M   sample points per period is the 

theoretical minimum number of points required to satisfy the Nyquist limit, the phase of the raw interference pattern 

must be resolved with a wavelength resolution that allows at least 10 M  points to be sampled per period in the 

raw interferogram. The reason for this is that the phase of the raw interference pattern must be extracted with high 

accuracy since it contains the dispersion information. The maximum fiber length that may be characterized using a 

common path configuration (as shown in Fig. 3-2) is therefore given by 

 
max

2

2 Δ
f

g

L
MN




  Eq. 3-31 

It should be noted that this resolution (length) limitation will be mitigated later in Chapter 6 where a low-coherence 

setup will be employed.  
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3.5 Experiments 

In this section VRI is experimentally validated by measuring well-known dispersion standards and some of its 

unique or important capabilities are demonstrated experimentally. The experimental setup used in these experiments 

varies depending on the experiment. In each of the experiments, however, a tunable laser source (Agilent 81600B or 

Agilent 81642A) with a built in wavemeter is swept across a given bandwidth (experiment dependent) at 10 nm/s, 

while a detector (Thorlabs PDA10CS) connected to a data acquisition (DAQ) card samples the signal at 100 kHz. 

The built in wavemeter of the tunable laser is capable of automatic self wavelength calibration using a built in gas 

cell, giving it an absolute wavelength accuracy of ±15 picometers and a relative wavelength accuracy of 0.1 pm. The 

tunable laser is connected to port 1 of a circulator, a detector is connected to port 3 and the device under test is 

connected at port 2, as illustrated in Fig. 3-2, Fig. 3-5, Fig. 3-6, Fig. 3-9 and Fig. 3-18. It is important to note that 

port 2 of the circulator is FC/APC connectorized and is connected to the FC/PC connectorized fiber under test to 

ensure a single reflection (i.e. 0U  ), at the interface. Another important note is that the 0.1 pm resolution of the 

tunable laser sets an upper limit to the maximum device length (based on the ability to adequately resolve the high 

frequency fringes in the interference pattern, i.e. Fig. 3-3) of approximately 0.8 meters using Eq. 3-31. As this 

represents the maximum imbalance that can be corrected for using a virtual reference, if a configuration with a 

reference path were to be used (i.e. dual arm configuration such as a Michelson or Mach-Zehnder interferometer) 

then the maximum group path length difference between the test path and the physical reference path would be 0.8 

meters. Consequently the use of a reference path makes it possible to characterize longer length fibers if the 

dispersion in the reference fiber can be well characterized, however, calibration error cannot be avoided in this case. 

Although the focus of the technique is for the characterization of short length fiber, the possibility for the 

characterization of longer fiber lengths by using a physical reference to bring the imbalance to within 0.8 meters 

should not be forgotten (this will be demonstrated in Chapter 6).  

3.5.1 Validation Experiments 

In this section, VRI is validated and its accuracy and precision are determined experimentally. This is achieved by 

characterizing well-known dispersion standards, namely standard telecom fiber (SMF28) and dispersion 

compensating fiber (DCF). The setup for the experiment used to validate VRI via the measurement of well-known 

dispersion standards is illustrated in Fig. 3-2. The broadband tunable laser used in the validation experiments is an 

Agilent 81642A. The measurements are compared to simulation, to results from a commercial instrument (Agilent 

86037C) and to previously demonstrated results from a single-arm 3-wave interferometer [34] [35] (a BSI based 

dispersion measurement technique that uses a common path configuration to eliminate calibration error).     

     In the first validation experiment, a short 42 centimeter length of SMF28 fiber is characterized and the results of 

the first and second order dispersion measurements are compared to simulation and experiment. The measurement 

of the first order dispersion (group delay) is illustrated in Fig. 3-11, where the group delay is normalized by sample 

length to compare with simulation. The average discrepancy between measured and simulated results is a root mean 

square (RMS) error of approximately 10
-3

 ps/m (<0.0001% relative error), an improvement over physically 
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referenced techniques which have ~10
-1

 ps/m resolution [19] (<0.01% relative error).  This improvement is likely 

due to the elimination of thermal and vibrational effects between scans in BSI based measurements.  

 

Fig. 3-11. Comparison between simulation and virtual reference measurement of group delay on a 42cm 

length of SMF28. The RMS error is with respect to simulation. Adapted (re-colored) with permission from 

[49]. 

The measurement of the second order dispersion (Dispersion parameter) is illustrated in Fig. 3-12, where the 

measurement is normalized by sample length to compare with simulation and experimental results from Single-Arm 

3-Wave interferometer measurements, a BSI based measurement technique [34] [35]. 

 

Fig. 3-12. Dispersion parameter measurements made via virtual referencing of a 42cm length of SMF28 and 

single arm 3-wave measurements (previously reported in [34] [35]) on a 39.5cm length of SMF28. The RMS 

errors are with respect to simulation. Adapted (re-colored, secondary axis added) with permission from [49]. 

This comparison is appropriate since the single-arm 3-wave technique also extracts the dispersion parameter from a 

second order interference pattern but employs a physical reference (since it is a BSI based technique) instead of a 

virtual one. The comparison presented in Fig. 3-12 shows that the virtual reference technique measures the 

dispersion parameter with an RMS error of approximately 10
-5

 ps/nm (<0.5% relative error) in comparison to 

simulation whereas the single-arm 3-wave technique also extracts the dispersion parameter with an RMS error of 

approximately 10
-4

 ps/nm (5% relative error). This order of magnitude improvement in accuracy is attributed to the 

fact that all data points are obtained with a single scan of the source (in approximately 14 seconds), making it less 
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susceptible to thermal fluctuations. The dispersion slope measured was found to be 0.053 ps/nm
2
-km, which is in 

agreement with our simulation. 

     In the second experiment, the second order dispersion of a 0.25 m length of dispersion compensating fiber (DCF) 

is characterized. Comparison of the measured dispersion results produced using VRI, the single-arm 3-wave 

technique [34] [35] and a commercial dispersion measurement system (Agilent 86037C), which measures the second 

order dispersion using the modulation phase shift method [19], are illustrated in Fig. 3-13. The results indicate a 

precision for the virtual reference technique, of 4×10
-5

 ps/nm (<0.15% relative deviation with respect to a linear fit). 

This order of magnitude improvement in precision, compared to the single-arm 3-wave technique (BSI based), may 

be attributed to the immunity to thermal fluctuation in the reference path. The slight difference in the dispersion 

slope between the MPS technique and the VRI technique may be due to the differences in the way second order 

dispersion is measured. The MPS technique obtains the second order dispersion using Eq. 1-7 which requires two 

analytical derivatives of the fit (as described in Chapter 2.2), whereas VRI measures the second order dispersion 

directly (using the same method described in Chapter 2.4.2 which includes third order dispersion). Another 

possibility is that the dispersion measured on the long length fiber (91.5 m) using MPS is slightly different to that on 

a short section (0.25 m) using VRI due to thermal variations in temperature that altered the core size leading to 

differences in waveguide dispersion. This is possible since waveguide dispersion is a dominant effect in DCF.   

 

Fig. 3-13. Dispersion parameter measurements on dispersion compensating fiber (DCF). The virtual 

reference measurement was made on a 0.25 m length of DCF, the single arm 3-wave measurement (previously 

reported in [34] [35]) was made on a 0.165 m length of DCF and the Agilent 86037C measurement was made 

on a 91.5m length of DCF. The standard deviations shown are with respect to linear fit. Adapted (re-colored, 

secondary axis added) with permission from [49].  
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3.5.2 Experiments demonstrating unique or important capabilities of VRI 

3.5.2.1 Demonstration of spectral compression 

In a spectral compression measurement, a higher order harmonic of the cavity (multiple round trips) is referenced. 

The experimental setup for a compression measurement is the same as that for a standard measurement shown in 

Fig. 3-2. The higher the reflectivity of the facets, the lower the loss experienced by 1U . This is because 1U makes 

multiple round trips, enabling higher order harmonics to exist within the cavity. In a standard fiber made of glass the 

reflectivity of the fiber facets is sufficient to allow the second harmonic to exist within the cavity. 

     In this experiment the device under test is an 11 cm length of SMF28 fiber.  The tunable laser (Agilent 81600B) 

is swept across a 200 nm bandwidth from 1440 nm to 1640 nm and both the first and second harmonics are 

referenced. The first harmonic is referenced by setting 1N  in Eq. 3-5 and Eq. 3-6 and is illustrated in Fig. 3-14. 

The second harmonic is referenced by setting 2N   in Eq. 3-5 and Eq. 3-6 as illustrated in Fig. 3-15. This case 

illustrates the compression of the interference pattern.  

 
Fig. 3-14. Virtual referencing of the first harmonic (N=1) of an 11 cm length of SMF28 fiber illustrating the 

uncompressed case. Adapted (re-colored) with permission from [50]. 
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Fig. 3-15. Virtual referencing of the second harmonic (N=2) of an 11 cm length of SMF28 fiber resulting in 

the compression of the period of the amplitude modulation. Adapted (re-colored) with permission from [50]. 

The amplitude modulation is extracted from the second order interference pattern in Fig. 3-14 and Fig. 3-15 by using 

a low-pass filter and spline fit. Here the spline is used as a simple low-pass filter. Compression of the bandwidth in 

the 2N   case (Fig. 3-15) reduces the minimum required source bandwidth in Eq. 3-25, increases the bandwidth of 

the measured dispersion plots in Eq. 3-27 and reduces the minimum measureable device length in Eq. 3-29.  This 

capability is confirmed experimentally by the results in Fig. 3-16 and Fig. 3-17, which show agreement between the 

compressed and uncompressed case. The results of the measurements with compression are slightly more accurate 

since the (effective) device length being measured is twice that of the uncompressed case (i.e. the ratio between the 

wavelength and the device length is smaller, resulting in greater accuracy). As a result, there is a slight vertical 

offset between the curves.    

 

Fig. 3-16. Comparison of group delay measurements of an 11 cm length of SMF28 fiber both with and 

without compression. Adapted (re-colored) with permission from [50].  
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Fig. 3-17. Comparison of dispersion × length measurements of an 11 cm length of SMF28 fiber with and 

without compression. Adapted (re-colored) with permission from [50].  

3.5.2.2 Demonstration of a two element cascade 

This experiment demonstrated the characterization of a two element cascade described by Eq. 3-10. The elements of 

the cascade are characterized individually and collectively. The experimental setup is illustrated is Fig. 3-18. The 

cavity lengths are 1 46 cmfL  , 2 31.4 cmfL  and 3 1 2 77.4 cmf f fL L L   . In this experiment the tunable laser 

(Agilent 81642A) is swept from 1510 nm to 1640 nm and the interference pattern is recorded. The frequency content 

(power spectrum) of the interference pattern, shown in Fig. 3-19, is used to extract the period (frequency) to 

approximate the virtual cavity lengths using Eq. 3-4.    

 
Fig. 3-18. Two element cascade used in the experiment, where Lf1 = 46 cm, Lf2 = 31.4 cm and Lf3 = Lf1 + Lf2. 

Adapted (re-colored) with permission from [50]. 

 
Fig. 3-19. Power spectrum generated by the cascade in Fig. 3-18. Peak 1 corresponds to cavity length Lf2, peak 

2 corresponds to Lf1 and peak 3 corresponds to Lf1 + Lf2. Used with permission from [50]. 
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Each peak in Fig. 3-19 corresponds to one of the cavities in the setup. Note that the relative magnitudes of the 

frequency components in Fig. 3-19 are in agreement with the theoretical development in Eq. 3-10 where Peak 1 

corresponds to the shortest cavity in the experiment since it is at the lowest frequency and it has the lowest 

magnitude since it is the second cavity in a two element cascade. Peak 1 corresponds to 2 31.4 cmfL  , peak 2 

corresponds to 1 46 cmfL  and peak 3 corresponds to 3 1 2 77.4 cmf f fL L L   . Sample second order 

interference patterns, generated by virtual referencing of each cavity (after the balancing step) are shown in Fig. 

3-20. Characterization of the first and second order dispersion of the elements in the cascade (individually and 

collectively) is illustrated in Fig. 3-21 and Fig. 3-22. The increased scatter in the collective characterization of the 

second order dispersion of both elements in the cascade (Fig. 3-22 peak 3) is due to the increase in noise in the 

interference pattern (Fig. 3-20 peak 3) as the fiber length approaches the maximum allowed by the wavelength 

resolution of the source (Eq. 3-31). Additionally, the increased frequency of the amplitude modulation requires an 

increase in the maximum frequency allowed by the low pass filtering process. This allows more high frequency 

noise from the interferogram into the extracted amplitude modulation and adds noise to the dispersion 

measurements.        

 

Fig. 3-20. Sample second-order interference patterns from Virtual Referencing (and balancing) of each of the 

three cavities in Fig. 3-18. Adapted (re-colored) with permission from [50]. 
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Fig. 3-21. Group delay for each of the three cavities in Fig. 3-18 where Lf1 = 46 cm (peak 2), Lf2 = 31.4 cm 

(peak 1) and Lf3 = Lf1 + Lf2 (peak 3). Adapted (re-colored) with permission from [50]. 

 

 

Fig. 3-22. Dispersion × length for the cavities in Fig. 3-18. Adapted (re-colored) with permission from [50]. 

3.5.2.3 Narrowband dispersion measurement  

This experiment demonstrates the dispersion characterization of a narrowband optical component, namely a fiber 

Bragg grating (FBG). The experiment uses the setup illustrated in Fig. 3-6 where the values of   fL and   GL  are 35 

cm and 2 cm, respectively. The interference pattern generated by sweeping the tunable laser (Agilent 81642A) from 

1554.5 nm to 1555.1 nm is illustrated in Fig. 3-7. After virtual referencing (as well as coarse and fine balancing), the 

VRI pattern generated is given in Fig. 3-8. By sweeping the length of the virtual cavity and tracking the balance 

point, plots of the first and second order dispersion, shown in Fig. 3-23 and Fig. 3-24, are generated. The group 

delay measurement in Fig. 3-23 is compared to the group delay measured using a commercial dispersion 

measurement system (SWS-OMNI from JDSU), which is based on the MPS technique [23] [24]. This test was 
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performed using the MPS technique by attaching the grating to a long lead fiber. The group delay slope (second 

order dispersion), measured using VRI and the commercial MPS based system, is -1582 ps/nm and -1563 ps/nm, 

respectively, indicating agreement between the two results. The slope of the group delay is confirmed by the direct 

measurement of the dispersion  length in Fig. 3-24. Note that the bandwidth of the results (Fig. 3-23 and Fig. 3-24) 

is less than the bandwidth of the grating. This is because the grating constrains the visible source bandwidth (i.e. 

source gratingB B  in (22)), which limits the bandwidth of the results accordingly (i.e. only a narrow range of 

wavelengths gratingB are reflected by the grating).  

 

Fig. 3-23. Group delay measurements of a fiber Bragg grating using VRI agree well with those made using a 

commercial system based on the MPS technique (SWS-OMNI). Adapted (re-colored) with permission from 

[50]. 

 

Fig. 3-24. Direct measurement of the dispersion × length of a fiber Bragg grating using VRI. Adapted (re-

colored) with permission from [50]. 
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3.5.2.4 Ultra-low dispersion measurement 

This experiment uses the two setups in Fig. 3-9 to demonstrate the characterization of a fiber that is smaller than 

allowed by Eq. 3-29 by taking the difference between two measurements using VRI.  The length of SMF28 fiber in 

this experiment was LSMF = 30.5 cm and the length of specialty fiber (short dispersion length sample to be tested), 

known as Twin Hole Fiber (THF), was LTHF = 16.1 cm. The tunable laser (Agilent 81642A) is swept from 1510 nm 

to 1640 nm and the interference pattern is recorded. The results of the dispersion characterization on the SMF28 

fiber sample are then subtracted from the results of measurements made on the sample with the SMF28 fiber sample 

spliced to the THF to determine the dispersion characteristics of the THF. The results of this difference 

measurement are shown in Fig. 3-25 and Fig. 3-26. 

 

Fig. 3-25. Ultra-low group delay measurement made by taking the difference between two VRI measurements 

as illustrated in Fig. 3-9. Adapted (re-colored) with permission from [50]. 

 

Fig. 3-26. Ultra-low dispersion × length measurement made by taking the difference between two VRI 

measurements as illustrated in Fig. 3-9. Adapted (re-colored) with permission from [50]. 

3.6 Conclusion 
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were several unique or important capabilities of the technique, including bandwidth compression, cascaded 

measurements, narrowband component characterization and ultra-short devices. Following experimental validation 

of the technique itself, the parameters and limitations as well as the unique capabilities were also verified 

experimentally. The validation experiments compared experimental results using VRI to simulation (using 

manufacturer's specifications) and to results obtained using conventional dispersion measurement techniques. These 

validation experiments allowed for the determination of the performance specifications of the technique. These 

performance metrics included both its accuracy and precision. Accuracy was shown to be high, with a relative error 

<0.0001% for group delay and <0.5% for the dispersion parameter. Precision was also shown to be high, with a 

relative deviation with respect to linear fit of <0.15%. The high accuracy and precision is due to the ability to 

measure the dispersion parameter directly (i.e. as in BSI) from the interference pattern rather than indirectly via 

differentiation (i.e. as in USI or MPS). Direct measurements, were previously only possible using BSI which 

requires a variable delay line (requiring balancing, alignment and lots of time to run the experiment). With VRI, 

however, measurements are easy to set up and fast to carry out (compared to BSI) since first and second or 

dispersion plots may be produced from a single spectral scan. A revised version of the comparison charts presented 

in the last chapter, which now includes VRI is now be presented in Table 3-1 and Table 3-2.  

Table 3-1: Typical precision for each dispersion measurement technique 
 

Technique  Typical precision  Comment References  

TOF  
10

-1
  ps  nm

-1

 
System cost inversely proportional to length. 

Need tens to hundreds of meters. 

[19] [20] 

MPS 
10

-1
 ps  nm

-1 

 

 

System cost inversely proportional to length. 

Need tens to hundreds of meters.  

[22] [24] 

TI  
10

-3
 ps nm

-1

  
Noise due to translation of mirror. 

Indirect measure of second order dispersion. 

[48] 

USI  
10

-3 
ps nm

-1

 
Indirect measure of second order dispersion. 

Fit to phase or group delay can have large error. 

[29] [41] [13] 

BSI  
10

-5 
ps nm

-1

  
Direct measure of second order dispersion. 

Highest precision. 

Difficult setup, operation, high cost delay line. 

[13] 

VRI 
10

-5 
ps nm

-1

 
Direct measure of second order dispersion. 

Highest precision.  

Easy setup and operation.  

No reference arm or delay line required. 

This chapter 
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Table 3-2: Comparison of several performance metrics for each dispersion measurement technique 

Technique 

Measures 

short 

length? 

Minimum scatter in 

group delay plot 

Directly 

measures 

second order 

dispersion? 

Fast  

(single scan) 

Low 

difficulty 

Setup and 

operation 

No 

Calibration 

TOF     √  √   

MPS    √ √   

TI  √    √  √   

USI  √   √ √ √
*
 

BSI  √ √ √    

VRI √ √ √ √ √ √
*
 

*
 Possible using the common path configuration 

The virtual referencing technique is therefore a fast, accurate, practical and easy to implement alternative to the 

physical balancing required by BSI with several unique capabilities. In the next chapter we explore another unique 

capability of VRI, the simultaneous characterization of multiple modes in a few-mode-fiber from a single spectral 

scan.   
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Chapter 4.  
Virtual reference interferometry: few-mode characterization 

 

In this chapter, Virtual Reference Interferometry (VRI) is used for the characterization of first and second order 

dispersion in short length (<1m) Few-Mode fibers (FMF). The technique is shown to be capable of simultaneously 

measuring multiple modes of an FMF with a single scan of a tunable laser [51]. The characterization of both 

polarization and transverse modes is discussed. The motivation and importance of the dispersion characterization of 

FMFs to the telecommunications sector is also discussed. Recall that VRI generates results equivalent to balanced 

spectral interferometry (BSI) by simulating a virtual reference with a group delay equal to that of the physical 

interferometer. The result of mixing the physically generated interferogram with a virtually generated interferogram 

is a second order interferogram with an amplitude modulation that is equivalent to the first order interference that 

would be produced by physical balancing in BSI. However, in VRI the measurement results for multiple modes are 

generated in a single scan, with a simpler and more convenient setup. The advantages of the technique, therefore, 

include speed, simplicity, convenience and the capability for simultaneous measurement of multiple modes.  

4.1 Introduction & motivation 

In telecommunications, the pervasive need for increased network capacity has led to the development of a novel 

signal transmission strategy known as mode division multiplexing (MDM). In this strategy, further multiplexing (i.e. 

in addition to wavelength division multiplexing, for example) is achieved by discriminating signals according to 

their polarization or transverse mode. The bandwidth available using conventional multiplexing techniques can 

therefore be multiplied by the number of modes in a FMF using MDM. FMFs are also the topic of considerable 

research [1] [2] [3] [4] [5] [52] due to their compatibility with currently deployed single mode fibers and their 

resistance to intermodal coupling [5]. Recently, high-capacity transmission systems that use a combination of 

transverse and polarization mode multiplexed signals have been demonstrated [1] [3]. The design of these systems 

requires techniques for accurate dispersion characterization of both polarization and transverse modes.    

     Conventional characterization techniques focused almost exclusively on the measurement of the differential 

group delay (DGD) between two polarization modes, such as those present in a polarization maintaining (PM) fiber. 

To make this type of measurement, several techniques were developed, including those based on: Polarizer-analyzer 

[53], Jones matrix eigenanalysis [54] [55], temporal interferometry [56] [57] [58] and spectral interferometry [59] 

[60] [61]. These DGD-based techniques measure the relative difference between modes, but requires that one of the 

modes (typically the fundamental) is already well characterized (using another technique). This technique works 

well for the characterization of a fiber with two modes; however, potentially ambiguous results can be produced as 

the number of modes increases [62] [63] [64]. The difficulty of using this technique as the number of modes 

increases, is that when the power in a higher-order mode is comparable to that of the fundamental [63], it becomes 
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difficult to ascertain whether the measured differences are between that of the fundamental (well characterized 

mode) and a higher order mode or if the difference is between two higher order modes. In order to eliminate this 

potential ambiguity a technique capable of characterizing the absolute group delay (not the differential group delay) 

is required.  

Some options for making absolute group delay measurements of all the modes include those based on time-of-flight 

(TOF) and interferometry (discussed in Chapter 2). Recently a TOF based technique was used to demonstrate the 

dispersion characterization of FMF [20] using a high speed (30 GHz) sampling oscilloscope and pulsed-tunable 

laser. In addition to the need for high speed (high cost) equipment, the problem with this technique is that the 

measurement required a 10.2 meter length FMF. The characterization of shorter fiber lengths (<1 meter) using TOF 

techniques, however, places prohibitive requirements on the sampling oscilloscope and pulsed laser. Interferometric 

techniques, on the other hand, are well suited for short length characterization. Temporal interferometric techniques 

(white-light interferometry) are capable of measuring the absolute group delay of each mode in an FMF [65]; 

however, they are susceptible to the vibrational noise caused by a moving variable delay line. For this reason, 

spectral interferometric techniques, which utilize a stationary reference arm, are generally preferred because they are 

not susceptible to this kind of vibrational noise.  

Spectral interferometric techniques can be categorized into two classes; unbalanced spectral interferometry (USI) 

and balanced spectral interferometry (BSI), as discussed in Chapter 2.4. Recall that the difference between the two 

techniques is that in BSI the group delay of the reference arm 'balances' (is equal to) that in the test arm, enabling the 

direct measurement of the second order dispersion, however, this technique is time consuming since each point in 

the dispersion plot requires a separate scan. On the other hand, USI based techniques are capable of characterizing 

the first order dispersion from a single spectral scan. An important class of USI based techniques employ a 

windowed Fast Fourier Transform (USI-WFT) to extract the group delay from an unbalanced interferometer [41] 

[45]. The problem with these techniques for characterizing multiple modes in an FMF is that the width of the spatial 

frequency peak generated by the Fourier transform depends on the size of the spectral window used. A window that 

is too large produces a broadened peak due to dispersion and a window that is too narrow generates a broadened 

peak due to the inverse nature of the bandwidth between a signal and its FFT. In short, since there is no way to know 

apriori the optimum window size it is difficult to prevent the overlap between spatial frequency peaks of different 

modes and ultimately to resolve individual modes. This problem was discussed in detail in Chapter 2.4.2 and 

Chapter 3.4.2 and proven mathematically in Appendix C. Furthermore, FFT based techniques suffer from the 

additional limitation that second order dispersion can only be extracted by numerical differentiation of the group 

delay curve (or a fit to the group delay curve followed by analytical differentiation) and not directly from the 

interferogram. This can be a problem for fibers with several modes where the coupled power in each mode is low. 

With higher noise in the group delay curve, the choice of fit can have a significant impact on the second order 

dispersion generated by analytical differentiation.  



Chapter 4:  Virtual reference interferometry: few mode characterization www.inometrix.com

  64 

 

 

BSI and VRI based dispersion characterization techniques [33] [34] [35] [13] [66], are advantageous (compared to 

USI-WFT techniques) for the measurement of FMF since they do not require the use of a spectral window, for 

which the ability to resolve individual modes of the FMF depends on apriori knowledge of the optimum window 

size. Furthermore, both first and second order dispersion measurements may be extracted directly and independently 

from the interferogram as discussed in Chapter 2.4.2 independent of the group delay measurement. BSI techniques 

have been used to characterize the group delay of polarization modes of birefringent fiber [66]; however, they have 

not yet been demonstrated for transverse modes in an FMF with more than two modes. The drawback of using BSI 

based techniques, however, is that they require a physical reference for balancing. The construction, alignment and 

use of a free-space variable delay line are not trivial. Its use involves the need for calibration, which introduces 

calibration error into measurements and makes it susceptible to environmental fluctuations (i.e. temperature, 

pressure, etc.) in the reference path. This typically requires both the enclosure and isolation of the reference path. All 

of these additional considerations are in addition to the fact that each point in the dispersion curve requires a 

separate interference scan, resulting is extended experiment run times.  

     Virtual reference interferometry (VRI), proposed in Chapter 3 as well as in [49] [50], is useful for overcoming 

the issues in both BSI and USI while maintaining the advantages of both. It is therefore a type of hybrid between 

balanced spectral interferometry and unbalanced spectral interferometry. The physical interferometer used to 

generate the real interference pattern is unbalanced, however, it is balanced virtually (i.e. the imbalance in the group 

delay between the test and reference phase fronts) via point-by-point multiplication with a simulated reference with 

a group delay imbalance equal to the imbalance in the physical interferometer. VRI has been demonstrated for the 

measurement of dispersion in single mode fibers and devices in Chapter 3 and in [49] [50]. The focus of this chapter 

is to demonstrate the advantages of using VRI for the characterization of polarization and transverse modes in FMF, 

an important class of fiber in both academia and industry. An important advantage of the technique, highlighted in 

this chapter is that, for modes with sufficient spatial separation, absolute measurements of first and second order 

dispersion can be generated simultaneously, without the possibility of ambiguity in the results.  

4.2 Theory 

4.2.1 Polarization modes 

The typical setup used to make dispersion measurements using VRI is the common path (or Fabry-Perot) 

configuration demonstrated in Chapter 3. This configuration utilizes the reflections at the front and end facets of a 

fiber under test to take advantage of the simplicity of single-ended measurements. In a PM fiber, as illustrated in 

Fig. 4-1, the reflected electric fields may be described by 1 2
ˆ ˆ oU A i A j   and 

   1 22 2

1 1 2
ˆ ˆ     f fj L j L

U A e i A e j
   

  . 

In these expressions  1   and  2   are the propagation constant in the fast and slow axis as a function of 

wavelength    and fL  is the fiber length. 1  A and 2  A are the field amplitudes of the fast and slow components 

respectively, which remain constant for oU  and 1U  assuming there is no mode coupling.  
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Fig. 4-1. Model for the interference in a polarization maintaining fiber. Adapted (re-colored) with permission 

from [51]. 

The interference pattern generated by the reflected electric fields is described by     
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 Eq. 4-1 

where  2 2
1 2 / 2K A A   and  2 2

1 2 / 2A A   . Setting 0   by exciting the fiber with an input polarization 45º 

from fast axis, and removing the zero frequency (DC) term, Eq. 4-1 simplifies to  
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 Eq. 4-2 

Although setting 0  is not necessary for the measurements, it helps to simplify the mathematical expression. 

Once the real interference pattern is produced physically, the virtual reference interferogram described by   

     0
ˆ ˆ,  2virtual v wI cos k L    Eq. 4-3 

where 0k  is the free-space propagation constant, vL  is the length of the simulated virtual reference path and w̂  is 

the ‘balanced wavelength’ of mode w  at which the group delay of the virtual reference path equals that of the 

measured mode as illustrated in Fig. 4-2. Point-by-point multiplication of the real interference pattern, described by 

Eq. 4-2, with a virtual reference interferogram described by Eq. 4-3 results in a second order interference pattern 

described by  
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 Eq. 4-4 

Each of the first two terms in Eq. 4-4 contain a low- frequency amplitude modulation around a corresponding 

balanced wavelength, illustrated in Fig. 4-2 by 1̂  for the slow axis and 2̂  for the fast axis. The modulation 

frequency increases with spectral distance from the balance point. Given sufficient separation between 1̂ and 2̂ , the 

influence on the low-frequency amplitude modulation around 1̂  produced by the second term (cross talk), or the 

influence on the low frequency modulation on 2̂ by the first term, can be easily removed by low-pass filtering. The 

third term in Eq. 4-4 may be easily removed by low pass filtering since it contains a slowly varying cosine 

(envelope) that modulates a fast varying cosine. Since this pattern is symmetric across the horizontal axis it therefore 

has a zero average value and is completely removed by low pass filtering. Note that the inset of Fig. 4-2 (magnified 

near 1̂ ) shows the carrier (not resolved and appearing black) modulated by multiple ‘envelopes’ of different 

frequencies. The lowest-frequency amplitude modulation is used to locate 1̂  and 2̂ , from which the group delay of 

each mode is obtained.  

Dispersion plots for both first and second order dispersion may be produced as a function of wavelength by varying 

the value of  ˆ    v wL  and locating the balance wavelength for each mode (as described in Chapter 2.4.2 for BSI 

which is the same process used in Chapter 3.2 and in [49] [50] for VRI). The precision of identifying balance 

wavelengths improves by removing sources of noise such as the high frequency carrier and cross talk from adjacent 

modes. This is achieved by low pass filtering, as shown in the lower plot of Fig. 4-2. In order to locate the balance 

points for each mode with low error, there must be sufficient spectral separation 2 1
ˆ ˆ    between the balance points 

of each mode. This occurs as long as the wavelength location of the second peak to the left of 1̂  is greater than the 

wavelength location of the second peak to the right of 2
ˆ   . Following the analysis on the minimum separation 

between modes Chapter 3.4.2 (assuming N=1) this condition is satisfied by   

 
  

2

2 1 1/2
1

1 6ˆ ˆ ˆ
2

w

w wfcL D

  



    
Eq. 4-5 

where  ˆ
wD  is the second-order dispersion parameter of mode w  and c  is the speed of light. Using typical 

dispersion parameters of SMF28, modes having a group index difference greater than 2.75 × 10
-4

 for a 1 meter long 

fiber can be resolved. The maximum fiber length that can be characterized using the common-path configuration, 

however, is dependent on the spectral resolution,Δ , with which the interferogram is sampled, given in Chapter 3 
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as  2 / 20 Δ  f gL N   [50]. The maximum measurable fiber length (typically ~0.8 meters with a wavelength 

resolution of 0.1 picometers) is sufficient for many applications, especially those in which only short lengths of fiber 

are available or desired. Furthermore, few mode fibers are used instead of multimode fibers since they are resistant 

to intermodal coupling (since the mode separation is large) [5]. Since this means that mode separation is large, there 

is no need to use long lengths of fiber to reduce the minimum spectral separation in Eq. 4-5 and therefore the fiber 

length is not a limitation for most practical cases.  

 

Fig. 4-2. Simulated second order interference pattern (upper graph) and the result of low-pass filtering (lower 

graph) used to extract the balance wavelengths, from which absolute group delay and second order 

dispersion of the individual modes can be obtained. Inset above shows a magnified spectral region around a 

balance wavelength. Although both modes (the slow axis balanced at 1
ˆ  and the fast axis balanced at 2

ˆ  ) are 

illustrated in the figure, only one mode is typically within the scan range of the tunable laser for a given   vL , 

which is varied to extract group delay and second order dispersion of both modes as a function of wavelength. 

Adapted (re-colored) with permission from [51]. 

4.2.2 Transverse modes  

Illustrated in Fig. 4-3 is a model for the reflections at the front and end facets of a p-moded FMF with multiple 

transverse modes, used to generate spectral interference. The model assumes light can be launched simultaneously 

into all transverse modes.  
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Fig. 4-3. Model for the interference in a few-mode fiber. Adapted (re-colored) with permission from [51]. 

 

The complex coupling coefficient    lj
l lq q e


  for each mode l  of the fiber determines the field amplitudes of the 

modes. The reflected electric field of the thl mode is described by
 22

0   l f lj L

l lU q U e
  

 and the resulting 

interference pattern generated by all the reflections at the facets of the FMF are described by   
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 
 
 
 

 Eq. 4-6 

In Eq. 4-6, the first term (DC term) contains the zero frequency components which results from the sum of the 

amplitudes of the coupling coefficients of each mode. The second term (high frequency components) contains the 

information on the individual propagation constants from which absolute measurements can be obtained using VRI. 

The third term (low frequency components) contains information about the relative differences between the 

propagation constants of the modes, from which differential measurements between modes can be obtained. In this 

chapter, VRI is used to reference the high frequency terms to allow for the measurement of absolute group delay and 

second order dispersion, avoiding the ambiguity possible in differential (relative) measurements. Note that for the 

FMF experiment, VRI is performed for characterizing transverse modes exactly as described for polarization modes.   
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4.3 Experiments 

The experiments demonstrated in this chapter include the characterization of the polarization modes in a Panda fiber 

and the transverse modes in a four-mode FMF using VRI. Both experiments use the same tunable laser source 

(Agilent 81642A), with a built-in wavemeter (wavelength resolution of 0.1 pm), swept from 1510 nm to 1640 nm. 

The laser ensures an absolute wavelength accuracy of ±15 picometers using a built in wavemeter with automatic 

wavelength calibration using a built in reference gas cell. Furthermore, in both experiments a fiber optic circulator 

connected to a tunable laser and detector (Thorlabs PDA10CS), as illustrated in Fig. 4-4(a) and Fig. 4-4(b), is used. 

The tunable laser is connected to port 1 of the circulator and a detector is connected to port 3. The optical connection 

between port 2 and the fiber under test is experiment dependent.  

For the characterization of the polarization modes in a Panda PM fiber, the setup in Fig. 4-4(a) is used. A 

polarization controller ensures that power is evenly distributed into both polarization modes, effectively setting 

0   in Eq. 4-1. This allows both modes to be characterized simultaneously with high signal-to-noise ratio. Note 

that even if 1A  and 2A  are quite different (i.e. without the polarization controller), both modes can still be 

characterized simultaneously (though power will not be evenly distributed between modes). Although it is possible 

to measure each mode separately, it is desirable to measure each mode simultaneously as it eliminates the possibility 

of thermal fluctuations in fiber length between scans. In order to couple light simultaneously into multiple transverse 

modes of an FMF a new coupling strategy was developed. The coupling strategy involves the use of an FC/APC 

connector on the launch fiber and variation of the distance to the front facet of the test fiber. Variation of the 

coupling distance (gap between the FC/APC connector and the FC/PC connector of the test fiber) using this setup 

(via a precision translation stage) allowed for variation in the amount of coupled power into each mode. For the 

simultaneous characterization of multiple fiber modes it is desirable to have an even power distribution in all fiber 

modes. The longitudinal offset technique, introduced here, is employed in both the VRI based setup shown in Fig. 

4-4(b) and the BSI based setup in 6-4(c). The results of VRI measurements are then compared to those made using 

BSI in the results section.     

 
Fig. 4-4. Experimental setup for measurement of (a) polarization modes in PM fiber using VRI, (b) transverse 

modes in an FMF using VRI, and (c) transverse modes using BSI. Adapted (re-colored) with permission from 

[51]. 
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4.4 Results 

VRI based measurements of the first order dispersion (group delay) and second order dispersion (dispersion × 

length) for the polarization modes in Panda PM fiber are illustrated in Fig. 4-5(a) and 6-5(b) respectively. The 

results of both polarization modes agree well with simulated curves provided by the manufacturer, Corning
®
 Inc.  

 

(a) 

 

(b) 

Fig. 4-5. Simultaneous absolute (a) group delay and (b) dispersion × length measurements for both 

polarization modes of a 47.2 cm long Panda polarization maintaining fiber. Adapted (re-colored and axis 

labels corrected in (b)) with permission from [51]. 

VRI based measurements of the first order dispersion (group delay) and second order dispersion (dispersion × 

length) for the transverse modes in a four mode FMF are compared to results obtained using conventional BSI in 

Fig. 4-6, Fig. 4-7(a)-(d) respectively. Since the low power coupled to each mode in the FMF increased the scatter in 

the group delay curves the second order dispersion (dispersion × length) had to be extracted directly from the 

balanced interferogram, which is possible using both BSI and VRI, as described in Chapter 2.4.2 and in [13] [49] 

[50]. In the VRI experiment the first three modes of the fiber (LP01, LP11 and LP02) were characterized in one 

scan. The gap position was then adjusted and a second scan was performed to increase the coupled power into the 

LP21 mode. As a result, the VRI curves in Fig. 4-6 and Fig. 4-7(a)-(d) were generated using only two scans, 

whereas, in the BSI experiment every point required a separate scan. The slight differences in scatter observed 

between experiments are due to variation in the power coupling (variation in SNR) between experiments for a given 

mode. The results for both first and second order dispersion, however, agree well in both experiments.  
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Fig. 4-6. Absolute group delay measurements of a 69.9 cm long few-mode fiber measured using balanced 

spectral interferometry and virtual reference interferometry. Adapted (re-colored) with permission from 

[51]. 

 
        (a) 

 
        (b) 

 
          (c) 

 
         (d) 

Fig. 4-7. Comparison of the dispersion × length measurements for the (a) LP01 mode, (b) LP11, (c) LP02 

mode, and (d) LP21 mode of a 69.9 cm length of few-mode fiber measured via Balanced Spectral 

Interferometry and Virtual Reference Interferometry. Adapted (re-colored) with permission from [51]. 
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4.5 Conclusion 

This chapter demonstrated the characterization of the first and second order dispersion of polarization modes in a 

Panda PM fiber and transverse modes in an FMF. This capability is of considerable interest for the development of 

mode-division multiplexing schemes in telecommunication networks. Like BSI, VRI is capable of directly 

measuring first and second order dispersion; however it does not require a complex free space reference path. The 

ability to measure second order dispersion directly from the interference pattern is especially useful when the first 

order dispersion curves have large scatter, as demonstrated in the experiment on the FMF in this chapter. 

Furthermore, full first and second order dispersion characterization of multiple modes can be completed in a single 

scan. Although USI based techniques are also capable of single scan characterization, only the first order dispersion 

can be characterized directly. However, since the peak width depends on the window size in USI, resolving the 

individual modes can be quite difficult since an optimum window size is unknown. Since the resolution is inherently 

optimized in BSI and VRI (see Chapter 2.4.3 and Appendix C) these techniques are best suited to the 

characterization of multiple fiber modes. However, VRI is more convenient than BSI since it does not require a 

physical reference path.  
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Chapter 5.  
Dispersive virtual reference interferometry 

 

This chapter introduces Dispersive Virtual Reference Interferometry (DVRI). The use of a dispersive reference is 

useful for the characterization of fibers and optical components with near zero dispersion-length [67]. This 

capability is of considerable practical interest for short length (<1m) fibers. In this chapter DVRI will be shown to 

have an accuracy equivalent to that in standard balanced spectral interferometry (BSI), on the order of 10
-3

 ps and 

10
-5

 ps/nm for the group delay and dispersion-length measurements, respectively. However, DVRI will be shown to 

be capable of achieving this accuracy without the need for wide spectral bandwidths or multiple spectral scans (as 

required by BSI). The technique will first be validated via comparison of results to manufacturer's specifications 

(simulation) and to experimental results obtained via standard VRI. After the technique is validated it will be used to 

characterize a 23.3-cm erbium-doped gain fiber (dispersion-length product <0.002 ps/nm), using a tunable laser with 

a bandwidth of 145nm. Furthermore, the dispersion in a 28.6-cm commercial dispersion shifted fiber will be 

characterized across the zero-dispersion wavelength and the zero-dispersion-wavelength and slope will be 

determined to be 1566.7 nm and 8.57×10
-5

 ps/(nm
2
∙m) to a precision of  ± 0.2 nm and ± 0.06×10

-5
 ps/(nm

2
∙m), 

respectively.  

5.1 Introduction & motivation 

Chromatic dispersion is an important physical parameter for a host of specialty fibers, such as photonic crystal 

fibers, twin-hole fibers, gain fibers, and dispersion-engineered fibers. Due to cost and other practical considerations, 

the capability for dispersion characterization on a short length (<1m) of fiber is highly desirable. Doped gain fibers, 

for example, have high absorption near the gain region when they are not pumped. The loss in the fiber, therefore, 

effectively limits the length of fiber that may be characterized. When length is constrained, so is the total dispersion-

length product (DL), defined as the second-order dispersion parameter (D) multiplied by the length of the fiber (L). 

Stated in a different way, the DL product is the cumulative group delay difference per unit bandwidth over the entire 

fiber length. Commercial dispersion characterization instruments, based on time-of-flight (TOF) or modulation 

phase-shift (MPS), typically have a resolution of 0.1 to 1 ps/nm as described in Chapter 2.1 and Chapter 2.2. 

Because of this limitation, acceptable characterization accuracy can only be obtained on long fiber length samples, 

particularly when the fiber dispersion is low. To characterize short fiber lengths (<1m), however, interferometric 

techniques are most commonly employed [19]. As discussed in Chapter 2.3 and Chapter 2.4, interferometric 

techniques may be classified into two categories; temporal [28] [27] and spectral [13] [17] [30] [29] [41] 

interferometry. Spectral interferometry may be further subdivided into balanced spectral interferometry (BSI) [13] 

[17] [30] and unbalanced spectral interferometry (USI) [29] [41]. The advantage of BSI is the ability to extract both 

first and second-order dispersion directly from the interference pattern (i.e. independent of each other [13]). For BSI, 

however, this capability, however, comes at the cost of increased experimental complexity and duration as a variable 
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delay line must be incorporated into the reference arm and its length adjusted so that each point in the measured 

dispersion curve is generated from a different interferogram (requiring multiple scans). This is due to the fact that in 

BSI, the group delay in the test arm (containing the test fiber) must be balanced by the reference arm. Since the 

resulting interference pattern provides information about the differences between the test and reference path, the 

balancing removes the effect of the first order dispersion. This produces an interference pattern that is directly 

related to the second order dispersion in the test fiber. More accurately, balancing results in an interferogram whose 

intensity variation contains information about the difference (  ) in the second-order dispersion length (DL) 

between the test and reference arm. The minimum spectral bandwidth needed to characterize a fiber using BSI is 

inversely proportional to   [30] [50], as discussed in Chapter 2.4.2. In BSI the reference path is typically chosen 

to be free space, since it has zero second order dispersion (don't need to calibrate out the second order dispersion of 

the reference) and therefore the   measured from the interferogram using a free space path is simply the DL of the 

test fiber itself. Therefore in standard BSI, which uses a free space reference path, the lower limit on the DL that can 

be measured is determined by the available bandwidth.  

In Chapter 3, virtual reference interferometry (VRI) [50] was introduced as an alternative to BSI where the free 

space reference arm used in BSI could be eliminated (if the common path configuration is used). In VRI a second-

order interference pattern is produced using a simulated reference path to balance the group delay in the test path, 

from which the DL of the test fiber can be extracted directly, in a manner analogous to BSI [13] [50]. Like BSI, 

however, using a simulated free-space reference also puts a lower limit on the DL that can be measured. However, 

since the reference is simulated in VRI, it is possible to simulate a dispersive reference so that   can include the 

dispersion of the simulated reference path. This is useful since the second order dispersion length of the reference 

path can be increased arbitrarily to reduce the bandwidth required for characterization (lowering the DL 

measurement limit). Using a dispersive reference path (with high second-order dispersion) lowers the DL 

measurement limit (which is in principle, limited by the fringe resolution) without requiring an increase in the scan 

range (bandwidth). This is possible since artificially increasing the dispersion difference between the test arm and 

the virtual reference arm (i.e. by increasing the simulated dispersion of the virtual reference) leads to a spectrally 

denser second-order interference fringe pattern. This allows the extraction of  over a smaller spectral region. For 

the same reason, this strategy also leads to an increase in the wavelength range over which the second-order 

dispersion of the fiber can be characterized. In this chapter, VRI will be used to refer to the use of a non dispersive 

virtual reference and the terms dispersive-VRI or DVRI will be used to indicate the use of a simulated dispersive 

reference. The theoretical relationships between the dispersion in the virtual reference, that of the test fiber and the 

properties of the resulting second order interference pattern will first be developed. The DVRI technique will then 

be validated experimentally and used to perform direct measurements of first and second order dispersion, in short-

length, low-dispersion gain fibers and dispersion shifted fibers, which would not be possible if a dispersive reference 

was not used.  
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5.2 Theory 

The detailed steps in a DVRI measurement are exactly as presented for VRI in Chapter 3 and in [50], with the 

exception that a dispersive reference is simulated instead of free space (non-dispersive reference).  A summary of 

the steps in a DVRI measurement are now presented to demonstrate the use of a dispersive reference. The first step 

in a DVRI measurement is to obtain a spectral interference pattern using the reflections from the two cleaved or 

polished facets of the test fiber. The intensity measured at the detector, after normalization of the amplitude is given 

by [50] 

      cos 2Real f fI L    Eq. 5-1 

where   is the wavelength, f  is the propagation constant of the test fiber and fL  is its length. The second step in 

a DVRI experiment involves the numerical generation of a simulated interference pattern using a dispersive virtual 

reference described by  

     0,  cos 2virtual v vI L     Eq. 5-2 

where  v   is the propagation constant of the dispersive virtual reference and vL  is its length, which is chosen to 

balance the group delay in the test fiber at a specific wavelength o , as shown in Fig. 5-1. The third step in a DVRI 

experiment involves the point-by-point multiplication of the interference pattern in Eq. 5-2 with the real interference 

pattern described by Eq. 5-1 to produce a second-order interference pattern described by  

              
slow varying ter

0

fast varying tm erm

1
,  cos 2 cos 2

2
SO f f v v f f v vI L L L L         

 
 

  

 





 Eq. 5-3 

and illustrated in Fig. 5-1. The second order interference pattern has a fast-varying term, amplitude modulated by a 

slow-varying term. The modulation amplitude changes according to its phase as described by  

          .mod. 0   2 2
f vAmp f f v v eff f eff vL L k n L n L            Eq. 5-4 

where 0k  is the propagation constant in free space,  
feffn   is the refractive index of the test fiber, and  

veffn  is 

the simulated refractive index of the reference path. Note that the magnitude is taken since    cos cos   .  
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Fig. 5-1. Amplitude modulated interference pattern described by Eq. 5-3. The fast varying interference is 

shown in blue and is not resolved in the figure. The slow varying amplitude modulation with phase described 

by Eq. 5-4 is shown. Adapted (re-colored) with permission from [67].  

An important note is that at the symmetry point 0 is an inflection point (local maximum or minimum) in the phase 

of the amplitude modulation function. Taking the first derivative of the phase function in Eq. 5-4 gives 
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Eq. 5-5 

Since the phase is minimized at 0  , this means that 
0

.mod. 0Ampd d
 

 


 , which implies that  

    0 0fgv v g fN L N L   Eq. 5-6 

It also implies that the phase is minimized since 2 2
.mod. 0Ampd d


    . The amplitude modulation is symmetric at 

wavelength 0 (Fig. 5-1), where the group index × length of the test fiber and that of the simulated virtual reference 

are balanced. It should be noted that since the value of  0gv vN L  (the group index × length of the virtual 

reference) is known and since it is equal to that in the test fiber, the only measured quantity is the wavelength 0  at 

which this equality occurs. Therefore by sweeping the simulated value of  0gv vN L  (independent variable) and 

measuring the location 0  (dependent variable) where the equality in Eq. 5-6 occurs, one may produce a plot of 

 0gf fN L   (the group index × length of the fiber) as a function of wavelength. 

Applying a Taylor expansion to  
feffn   and  

veffn   in Eq. 5-4 around 0 and neglecting terms higher than the 

third order (to include third order dispersion effects) gives the phase expression  
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 Eq. 5-7 

Where the equality in Eq. 5-6 means that the first term in Eq. 5-7 is zero. Notice that at 0  the phase is not zero (it 

is minimized). Eq. 5-7 may be further simplified by making the substitutions  
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eff eff

f v

d n d nd
L L

d d d
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
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   Eq. 5-9 

where  0 is the difference in second order dispersion and 

0

d

d 


is the difference in third order dispersion 

between the test and reference arms. Eq. 5-7 then simplifies to  
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 Eq. 5-10 

Taking the phase difference between two peak or valley points with known phase separation and neglecting terms 

above third order gives 
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 Eq. 5-11 

where 0m  , 0n   and  m n  is the number of peak-to-valley or valley-to-peak transitions between a peak or 

valley at n and one at m . The peak and valley points are chosen so that either 0m n     or m n o    . For 

example, in Fig. 5-1 2m   and 1n  so that Eq. 5-11 gives the phase separation between 2  and 1  as . The 

same result is obtained for 4m  and 3n  . Using   0

0

2 2
0 effc

D d n d



    , the  0  term in Eq. 5-11 can be 

expressed as  

      0 0 0
0

v v f f

c
D L D L  


    Eq. 5-12 

Note that in order to accurately locate the symmetry point 0  in the above equations, a peak and valley must be 

visible on each side of 0  as illustrated in Fig. 5-1 and discussed in Chapter 2.4.2 and Chapter 3.4. Furthermore, at 

least one peak and one valley on each side of 0  must also be visible within the scan range, in order to be able to 

measure second order dispersion directly from the interference pattern as described in Chapter 2.4.2 and Chapter 

3.4.2 as well as in [13] [50]. As a result, the minimum bandwidth required ( min 0( )B   in Fig. 5-1) is given by the 

spectral separation between 2  and 4 . The next section follows a similar procedure as in Chapter 2.4.2 or Chapter 

3.4.2 or [13] [50], to develop the relationship between the minimum bandwidth min 0( )B   and the dispersion length 

difference between the test and reference paths  0 .  

5.2.1 Minimum bandwidth & spectral compression 

 

A method for spectral compression of the interference pattern by virtual referencing of the higher order harmonics of 

the fiber was presented in Chapter 3.3.1 and a derivation for the minimum bandwidth was presented in Chapter 

3.4.1. The spectral compression possible using the compression technique in Chapter 3.3.1 was limited by a 

reduction in the fringe visibility due to loss experienced at the fiber facets. This limitation is not present when using 

DVRI since only the first harmonic is being referenced. What follows is a re-derivation of the minimum bandwidth 

for DVRI as a function of  0 . It will be important to note that increasing  0  leads to compression which 

reduces the minimum bandwidth required for a measurement and increases the bandwidth of the measured results.  

The minimum bandwidth of the source required to measure the dispersion from the phase of the amplitude 

modulation is determined by the requirement that at least one peak and one valley be present on both sides of 0  

(illustrated by 1  and 2  on the right side and 3  and 4  in Fig. 5-1). The minimum bandwidth is given by the 
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spectral distance between 2  and 4   in Fig. 5-1 and is also illustrated in Fig. 5-2. The bandwidth of the source 

sourceB  must therefore be greater than this minimum bandwidth, described as  

    42 2 02Source minB B         Eq. 5-13 

An expression for the maximum wavelength spacing  2 0   is required to find the relationship between the 

dispersion of the dispersive virtual reference and minB . Although Eq. 5-11 cannot be used to get an exact phase 

separation when 0n  , the phase separation between 1  and 0  ( 1m   and 0n  ) is still constrained to 2 as 

illustrated in Fig. 5-2.  Using this gives the expression  
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 Eq. 5-14 

which yields  
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2 1
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
 Eq. 5-15 

Substitution of this result into Eq. 5-11, with 2m   and 1n  , and given the condition that  2 0 0   , the 

result simplifies to  
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 
  
  

 Eq. 5-16 

Substitution of Eq. 5-16 to Eq. Eq. 5-13 gives  
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0

6
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



 
 
  

  Eq. 5-17 

where increasing  0  (via the simulated dispersion of the dispersive virtual reference in Eq. 5-12) reduces the 

minimum bandwidth. The measurable bandwidth MeasB  of the dispersion plot is therefore given by  

 sourcMeas mineBB B   Eq. 5-18 

which also increases as minB decreases. An important result of Eq. 5-12 and Eq. 5-17 is that an arbitrarily large 

 0v vD L may be selected (simulated) to ensure that  0  is large enough so that  min 0B   is less than the 

bandwidth of the source (scan). The reduction in min 0( )B   is referred to as compression of the interferogram. Note 

that since the sign of  0 is unknown, there are two possibilities for the value of  0f fD L . However, by 

comparing the second-order interferograms produced using both positive  0v vD L  and negative  0v vD L , one 

can easily remove this ambiguity. This section considered the effect that  0  has on the ability to compress
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min 0( )B  . The next section considers the design for the dispersive reference itself and how it may be used to 

measure first and second order dispersion.  

5.2.2 Design of a dispersive virtual reference 

The design of a dispersive virtual reference involves the development of mathematical expressions for the effective 

refractive index × length, virtual group index × length and virtual second order dispersion parameter × length of the 

virtual reference for use in Eq. 5-2, Eq. 5-6, Eq. 5-11 and Eq. 5-12. There are many possibilities for the design of a 

dispersive virtual reference, however, the simplest designs using low order polynomials are considered in the 

sections that follow. The design of a dispersive reference may begin with an expression for the virtual effective 

refractive index × length, from which the virtual group index × length and virtual second order dispersion parameter 

× length may be derived, or it may begin with an expression for the virtual group index × length, from which the 

virtual effective refractive index × length and virtual second order dispersion parameter × length may be derived. In 

the following sections both approaches will be used and the simplest design will be chosen.  

5.2.2.1 Design via the effective index 

The goal in this approach is to develop the lowest order polynomial description for the virtual effective refractive 

index × length but ensure that the expression for the virtual second order dispersion parameter × length will not be 

zero (since it is obtained by second order derivative with respect to wavelength). For this to be the case, the lowest 

order polynomial that can be used in the expression for the virtual effective refractive index × length  is a second 

order quadratic polynomial as described by  

      
2

 s
veff vn L Q r      Eq. 5-19 

where Q , r  and s  are parameters of the polynomial used in the design of the dispersive virtual reference. This 

results in an expression for the group index × length given by  

      2 2  sv

v

eff

gv v eff v

dn
N L n L Q r

d


   
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 
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  

 Eq. 5-20 

Since Eq. 5-20 is a second order polynomial, this type of reference is known as a second order dispersive reference. 

It also has a second order dispersion × length that is described by a first order polynomial as shown in  

      
0

0
0 0 0

21
vg

v v v

dN Q
D L L

c d c



  


    Eq. 5-21 

Although this design may be used to model the dispersive virtual reference, it is not the simplest (lowest order 

polynomial) description. The next section considers the possibility of developing a simpler design by starting with a 

first order polynomial expression for  gv vN L . 
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5.2.2.2 Design via the group index 

This section considers the possibility of developing a simpler first order dispersive reference in which the group 

index × length is described by a first order polynomial  

      
vg vN L K a b     Eq. 5-22 

The constants K , a  and b  are parameters of the polynomial used in the design of the dispersive virtual reference, 

where K  is a unitless parameter and b  and a  are expressed in meter units. This description makes the expression 

for the second order dispersion × length constant as a function of wavelength  

  
 1 gv v

v v

dN L K
D L

c d c





   Eq. 5-23 

The extraction of an expression for    0 0veff vn L  , however, involves solving the first order differential equation  
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 Eq. 5-24 

The solution is obtained by re-writing the equation in standard form 
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where the solution is found by multiplying both sides by an integrating factor 1    
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and using the chain rule to collect terms on the left hand side  
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 Eq. 5-27 

gives  
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 Eq. 5-28 

Integrating both sides  
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Eq. 5-29 

Multiplying both sides by vL   
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Eq. 5-30 

Substitution of Eq. 5-24 into Eq. 5-30 gives  
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Eq. 5-31 

The solution is  

     ln
v veff L K Kan b C         Eq. 5-32 

where C  is an arbitrary constant due to the indefinite integral in Eq. 5-31. The value of this constant is not important 

as it is not a factor in the group index (cancelled out in the group index expression). For simplicity setting 0C   the 

solution simplifies to  

     ln
veff vL K Ka bn       Eq. 5-33 

Although the expression for the effective index × length may seem somewhat artificial due to the ln   

dependence it produces the lowest order dispersive reference in the group index × length. The expression in Eq. 5-33 

may be used to determine the propagation constant in Eq. 5-2 using the relation   

    0  
vv vv effk nL L    Eq. 5-34 

where 0k  is the propagation constant in free space. Since the expressions developed in this section result in the 

lowest order (first order) and therefore simplest dispersive reference this model is the one that will be used 

throughout this chapter. The next section graphically illustrates the role of the constants K , a   and  b  used in this 

model.  

5.2.3 Role of the parameters of the dispersive reference    

The parameter K  in Eq. 5-22 determines the slope of the  gv vN L  curve and since  v vD L  is derived from the 

slope of  gv vN L ; it also directly sets the value of  v vD L  in Eq. 5-23. The parameters a  and b are used in 

conjunction in Eq. 5-22 to set the value  gv vN L  at a specific wavelength, such that  gv vN L b  when a  . 

To ensure that  gf fN L  is balanced by  gv vN L  at some wavelength within the available spectral bandwidth the 

parameter a  is chosen such to be the centre of the scan range such that  maxmin 2a    . An estimate for the 

value of b  that balances the test path at a  may be found using      2  2
fgv v g f avgb N a L N a a aL T  , as 

described in [50] [49] and in Chapter 3 (using Eq. 3-4). The effect of compression, achieved by using a dispersive 

virtual reference, is visualized by the two interferograms shown in Fig. 5-2. It demonstrates how the use of a 



Chapter 5:  Dispersive virtual reference interferometry www.inometrix.com 83 

 

 

dispersive virtual reference with 0 K   compresses the interferogram, compared to using a non-dispersive reference 

where 0 K  . 

 

Fig. 5-2. Plot of the dispersive virtual reference interferograms and group index × length curves for (a) K=0 

(VRI with a non-dispersive reference) and (b) DVRI using K=-8.68e+3. Two  gv vN L  curves are 

superimposed to show the curves that generate intersections at 0 a   and 00  new  . Adapted (re-colored) 

with permission from [67]. 

The balance point (location of 0 ) in the second order interference pattern corresponds to the intersection point 

between the  gv vN L  curve and the  gf o fN L  curve. At the intersection the condition 

   gv o v gf o fN L N L   occurs. The group delay plots in Fig. 5-2 show two superimposed  gv vN L  curves to 

illustrate balancing at 0 a   (interferogram shown for this case) and 00  new  . The two  gv vN L  curves 

demonstrate how 0  may be varied by changing the value of b  in Eq. 5-22 to some new value (i.e. newb ) so that the 

first order dispersion (group delay or group index × length) may be plotted by sweeping the value of b and tracking 

0 . Another important observation is that the difference in the slope of the curves at the intersection point is directly 

proportional to the magnitude of the compression given by  0  and controlled by  0v vD L in Eq. 5-12. The 

second order dispersion of the fiber may be extracted directly from the interference pattern in Fig. 5-2 by solving for 

 0  in Eq. 5-11 using a peak/valley pair (with known phase separation) on each side of  0  (i.e. 2  and 1  as 
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well as 4  and 3 ) to generate a system of equations using Eq. 5-11. After solving for  0 , the second order 

dispersion may then be extracted by combining Eq. 5-12 and Eq. 5-23 given     0sgn sgnv vD L K    (where 

sgn  determines if the sign is positive or negative) and assuming    0 0 fv v fD L D L  , the result is                                

       0 0 0n
1

sgf fD L K K
c

      Eq. 5-35 

5.2.4 Cost of using a dispersive reference: VRI vs. DVRI 

It is important to note the cost of using a dispersive virtual reference. A comprehensive theoretical discussion and 

analysis is provided in Appendix D whereas this section only summarizes the conclusions. Appendix D shows that 

since the use of a dispersive virtual reference makes the slope to the simulated group delay curve non-zero (it is zero 

in VRI, as shown in Fig. 5-2), any uncertainty in the wavelength measurement of the balance point results in an 

uncertainty in the simulated group delay. The uncertainty in the group delay is proportional to the slope of the group 

delay curve (i.e. the second order dispersion) of the dispersive virtual reference at the balance point (intersection in 

Fig. 5-2). Therefore, the cost of using a dispersive virtual reference to the measurement of the first order dispersion 

is an increase in the uncertainty in the absolute magnitude of the group delay, compared to standard non-dispersive 

VRI.  

The cost of using a dispersive virtual reference for the measurement of second order dispersion, however, is slightly 

more complicated. If a first order dispersive reference is used, Appendix D shows that there is no additional 

uncertainty in the second order dispersion measurement compared to VRI. However, if a second order (or higher) 

dispersive reference is used, then there is increased uncertainty in the second order dispersion measurement 

compared to VRI. This means that it is advantageous to use a first-order dispersive reference when using DVRI to 

measure second order dispersion.  

Ultimately, DVRI is useful for enabling measurements that would otherwise be impossible (by compressing the 

interference so that the minimum bandwidth is less than that of the source); however using a dispersive reference 

increases the uncertainty in the group delay measurement. Therefore, if using DVRI is not necessary, the group 

delay can be measured with greater certainty by using VRI. However, if the objective of a particular experiment is to 

characterize the second order dispersion and the group delay is of no interest, then either VRI or DVRI (with a first 

order dispersive reference) will provide equivalent accuracy.      
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5.3 Experiments 

This section demonstrates two practical applications of dispersive virtual reference interferometry. The technique is 

first validated by measurement of a dispersion standard and then it is used to make measurements that would not be 

possible using standard VRI or BSI with the given spectral bandwidth of the source. The experimental setups used to 

generate a real interference pattern in standard fibers and polarization maintaining gain fibers are illustrated in Fig. 

5-3(a) and Fig. 5-3(b), respectively. In each experiment a tunable laser (Agilent 81600B Option 160 or 200), 

connected to port 1 of a fiber optic circulator, is swept continuously over a given bandwidth (experiment dependent) 

at 10 nm/s while an optical detector (attached to a data acquisition card), connected to port 3 of a fiber optic 

circulator, samples the signal at 100 kHz. The tunable laser has a built-in wavelength meter with a resolution of 0.1 

picometers. It also has the capability to automatically calibrate wavelength measurements using a built-in gas cell. In 

both setups shown in Fig. 5-3, light is launched into the test fiber from an angled facet so that only one reflection is 

produced at the interface between the launch fiber and the front facet of the test fiber. An interference pattern is then 

generated using the reflections from the front and end facets of the fiber under test (FUT) and plotted as a function 

of wavelength via synchronization of the timing between wavelength and signal sampling. This common path 

interferometer setup is preferred to using a dual arm interferometer since it does not require calibration of the 

dispersion of the optical elements used in the (physical) reference path of these interferometer setups. Eliminating 

the need for calibration also removes the associated calibration error, making this configuration more accurate than a 

dual arm interferometer. Accuracy is especially important when the dispersion × length of the fiber under test is low 

since the magnitude of the calibration error can exceed the magnitude of the measurement itself. 

 

Fig. 5-3. Setup for dispersion measurement of (a) standard fibers (b) polarization maintaining gain fiber. 

Used with permission from [67].  

Transmission-based, polarization-dependent gain measurements can be performed by converting the setup in Fig. 

5-3(b) by replacing the polarimeter with a 980/1550 nm WDM coupler, and moving the detector from port 3 of the 

circulator to the 1550 nm side of the WDM coupler as illustrated in Fig. 5-4.  
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Fig. 5-4. Setup for the measurement of gain in PM (birefringent) gain fiber. 

The gain for a given pumping condition is measured by comparing the intensity scan from the test fiber to a 

background measurement without the gain fiber and computed via  

  
    1010 , /

,
Background

f

log I P I
G P

L

 
   Eq. 5-36 

Where P is the pump power,  ,I P   is the intensity plot of the gain fiber at a given pump power,  BackgroundI   is 

the intensity plot of the background measurement (with zero loss and pump off) and fL  is the length of the gain 

fiber. 

5.3.1 Experimental validation of theory 

The first experiment in this chapter provides experimental validation of the theory previously developed for DVRI. 

The validation is performed via comparison to measurements on standard fiber (SMF28) to results produced via VRI 

(previously validated in [50] and in previous chapters). The results are also compared to the manufacturer’s 

specification (simulated curves). The setup used in this experiment is shown in Fig. 5-3(a). This tunable laser used 

was an Agilent 81600B Option 200 tuned from 1440nm to 1640nm. The wide bandwidth is required for this 

validation experiment so that standard (non-dispersive) VRI may be used to characterize the fiber over a wavelength 

range sufficient for comparison.  The results of the comparison illustrated in Fig. 5-5 indicate excellent agreement 

between both techniques and the manufacturer’s specification. The accuracy of the DVRI measurements, defined by 

the standard deviation of the measured group delay and dispersion × length plots, with respect to simulations based 

on the manufacturer’s specification [68] , was found to be 2.7×10
-3

 ps and 5.2×10
-5

 ps/nm, respectively. Note that 

the maximum deviation from the specification of the group delay and dispersion × length points within the 

measurement range was 4.9×10
-3

 ps and 8.6×10
-5

 ps/nm, respectively. The precision of the group delay 

measurement, defined as the standard deviation of the measured points with respect to a second order polynomial fit 

was found to be 9×10
-4

 ps. The precision of the dispersion × length measurement, defined as the standard deviation 

of the measured points with respect to a linear fit was found to be 1.9×10
-5

 ps/nm.  The dispersion slope (found from 

a linear fit to the dispersion × length curves) was found to be 4.7×10
-2

 ps/nm
2
∙km in both the VRI and DVRI 

measurement compared to 5.5×10
-2

 ps/nm
2
∙km in the simulation. The results in Fig. 5-5 illustrate that the 

wavelength range over which dispersion measurements may be achieved may also be increased by using DVRI. 
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            (a) 

 
       (b) 

Fig. 5-5. Measurements of (a) group delay and (b) dispersion parameter on a 20 cm length of SMF28 using 

VRI and DVRI (K=-2e+3). Adapted (re-colored, secondary axis added to (b)) with permission from [67]. 

5.3.2 Characterization of gain fiber  

The second experiment in this chapter demonstrates the generation of results that would be impossible for standard 

(non-dispersive) VRI and BSI. The experiment is a demonstration of DVRI for the characterization of both 

polarization modes in a 23.3-cm length of polarization maintaining erbium doped gain fiber, as a function of pump 

power, using the setup in Fig. 5-3(b). This fiber has a low second-order dispersion parameter (less than half that of 

SMF28) and the loss in the unpumped fiber limits the length that can be characterized. As a result, the total DL 

product of the test fiber in this experiment was 0.0012 ps/nm. Using Eq. 5-17, this measurement would require over 

200 nm of bandwidth, far exceeding the 145 nm bandwidth of the source used in this experiment (Agilent 81600B 

option 160). This measurement would not be possible without using a dispersive reference to compress the 

interference pattern and ensure that the minimum bandwidth required is less than the bandwidth of the source. In the 

experimental setup shown in Fig. 5-3(b) the output of a 980nm pump laser (Lumics LU0980M500) is coupled via a 

WDM coupler to the output of port 2. Since this gain fiber is birefringent, both signal and pump power must be 

coupled to one polarization mode at a time using polarization controllers and a linear polarizer at the output of the 

WDM coupler. The linear polarizer used is broadband with an extinction ratio greater than 20 dB for both 980 and 

1550 nm light. The polarization of the light launched into the birefringent gain fiber is controlled by rotating the 

polarizer at the launch side of the polarization maintaining gain fiber and observed using a polarimeter (PAT 9000) 

to ensure that light is coupled to one polarization mode at a time. The polarization controllers are adjusted to 

maximize the power from the tunable laser and the pump laser at the output of the linear polarizer. For each 

polarization mode and pump (gain) setting, the tunable laser (Agilent 81600B Option 160) is tuned from 1495nm to 

1640nm and the detector samples the signal. Dispersion measurements are then performed from the sampled signal 

using DVRI. Following the completion of the dispersion measurements at various pump powers for a given 

polarization mode, the gain measurement is performed by converting the setup from that shown in Fig. 5-3(b) to that 

shown in Fig. 5-4 by replacing the polarimeter with a WDM to filter out the pump light and connecting the detector 
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to the signal port of the WDM. The dispersion and gain measurements may then be repeated for the other 

polarization mode. The results of the gain and group delay measurements are shown in Fig. 5-6(a) and Fig. 5-6(b), 

respectively. The standard deviation of the measured group delay curves with respect to a sixth order polynomial fit 

was found to be on the order of 10
-3

 ps for all curves. The results of dispersion parameter measurements obtained by 

differentiation of the sixth order polynomial fit to the group delay curves are illustrated in Fig. 5-7. In general, it is 

expected that the first and second order dispersion will change in the gain region, since a change in absorption (or 

gain) is associated with a change in refractive index through the Kramers-Kronig relations. Furthermore, the general 

shape of the curves in Fig. 5-6 and Fig. 5-7 and consistent with the curves obtained in [17] for erbium doped fiber.  

 
Fig. 5-6. (a) Gain and (b) group delay curves for a 23.3 cm length of erbium doped PM gain fiber pumped at 

980 nm at various pump power conditions for both fast axis and slow axis measured using DVRI (K=-

7.75e+3). Adapted (re-colored) with permission from [67]. 

 
Fig. 5-7. Dispersion parameter curves for a 23.3 cm length of erbium doped PM gain fiber pumped at 980 nm 

for both (a) fast and (b) slow axes at various pump power conditions measured via DVRI (K=-7.75e+3). 

Adapted (re-colored) with permission from [67]. 
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5.3.3 Characterization of dispersion shifted fiber 

The last experiment in this chapter pushes the DVRI technique to the limit by characterizing a 28.6-cm length of 

dispersion shifted fiber (DSF), using the setup in Fig. 5-3(a), across the zero-dispersion region using a limited 

bandwidth of 145nm. The tunable laser used is the Agilent 81600B Option 160 tuned from 1495nm to 1640nm. 

Measured group delay curves are shown in Fig. 5-8(a) and dispersion parameter curves (found using Eq. 5-35) are 

provided in Fig. 5-8(b). The standard deviation of the measured group delay points with respect to a third order 

polynomial fit was found to be 1.4×10
-3

 ps. The standard deviation of the measured second order dispersion × length 

points with respect to a linear fit was found to be 4.0×10
-5

 ps/nm. Since the zero-dispersion wavelength and the 

dispersion slope (slope of the dispersion parameter) is of interest for DSF it is also measured in this experiment. 

After inversion of the axes in Fig. 5-8(b) followed by a linear fit, a linear regression analysis gives the zero-

dispersion wavelength as 1566.7 nm (consistent with the zero-dispersion wavelength specification provided by the 

manufacturer) with a precision of ± 0.2 nm and the dispersion slope as 8.57×10
-5

 ps/(nm
2
∙m) with a precision of ± 

0.06×10
-5

 ps/(nm
2
∙m).  These measurements would not be possible given the bandwidth of this laser without the use 

of a dispersive reference since  0 0   in Eq. 5-17 at the zero dispersion wavelength. It should be noted that 

although it is not critical to characterize DSF on short length, this experiment demonstrates that using DVRI it is 

possible to characterize second order dispersion that is as low as zero. Furthermore, one of the goals of this 

experiment was to directly measure the zero-dispersion wavelength and the second order dispersion in the region of 

the zero-dispersion wavelength, as this is important in several applications (e.g. nonlinear and quantum optics 

applications) where although the dispersion is small, it must still be compensated.   

 
                    (a) 

 
                                                       (b) 

Fig. 5-8. Measurements of (a) group delay (b) dispersion parameter on a 28.6 cm length of dispersion shifted 

fiber via direct measurement using DVRI (K=-8e+3). Adapted (re-colored) with permission from [67]. 

 

 

4926.48 

4926.5 

4926.52 

4926.54 

4926.56 

4926.58 

4926.6 

4926.62 

4926.64 

4926.66 

1520 1540 1560 1580 1600 1620 

G
ro

u
p

 D
e

la
y 

(p
s/

m
) 

Wavelength (nm) 

-0.0011 

-0.0008 

-0.0005 

-0.0002 

0.0001 

0.0004 

0.0007 

0.0010 

0.0013 

-0.004 

-0.003 

-0.002 

-0.001 

0.000 

0.001 

0.002 

0.003 

0.004 

0.005 

1520 1540 1560 1580 1600 1620 

D
is

p
e

rs
io

n
 ×

 le
n

gt
h

 (
p

s/
n

m
) 

D
is

p
e

rs
io

n
 P

ar
am

e
te

r 
(p

s/
n

m
∙m

) 

Wavelength (nm) 



Chapter 5:  Dispersive virtual reference interferometry www.inometrix.com 90 

 

 

5.4 Conclusion 

The theory of dispersive virtual reference interferometry for the characterization of short length (<1m) low 

dispersion fiber is introduced and demonstrated in this chapter.  The use of a dispersive virtual reference allows for 

compression of the interferogram which enables measurements that would otherwise not be possible with the 

available bandwidth using standard techniques that do not employ a dispersive reference. This technique is useful 

for characterizing fibers with low (or zero) second order dispersion × length by enabling the compression of the 

interference pattern. The compression achieved using this technique is superior to that presented in Chapter 3.3.1 

since there is no associated reduction in interference fringe contrast.  Compression of the interferogram has the 

additional benefit of enabling the generation of dispersion plots over a wider spectral range. The use of a dispersive 

virtual reference extends the flexibility, versatility and practical utility of the virtual reference technique.  
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Chapter 6.  
Low-coherence virtual reference interferometry 

 

This chapter presents the adaptation of Virtual Reference Interferometry (VRI) for use in a low coherence setup (low 

cost) to characterize dispersion in short-length fiber. When used in a low coherence setup, the technique is referred 

to as low-coherence virtual reference interferometry (LC-VRI) [69]. A low coherence setup consists of a broadband 

LED source (low coherence) and a low resolution spectrometer or spectrum analyzer. The LC-VRI technique is 

shown to be a simple and convenient alternative to balanced spectral interferometry (BSI), capable of measuring 

both first and second order dispersion directly from the interference pattern. The main advantage of using LC-VRI 

instead of BSI is that full characterization can be performed from a single spectral scan (high speed measurement), 

without the need for a precision variable delay line in the reference path (reduced cost). The LC-VRI technique is 

demonstrated by characterizing the dispersion in a dispersion standard (SMF28 fiber) and the results are compared 

to both the manufacturer’s specifications and to measurements obtained using BSI. The standard deviation of the 

first and second order dispersion is found to be on the order of 10
-3

 ps and 10
-4

 ps/nm respectively for both BSI and 

LC-VRI.  

6.1 Introduction & motivation 

Spectrometers and broadband LED light sources can be useful low-cost tools for characterizing chromatic dispersion 

in short length (<1m) optical fibers via low-coherence spectral interferometry [29] [13] [30] [41] [48]. In low-

coherence spectral interferometry, light from a broadband LED source is separated into two paths; a reference path 

for which the dispersion is known and a test path with unknown dispersion properties. When the light waves from 

the two paths are recombined, a spectral interference pattern that contains information about the difference in 

dispersion between the test and reference path is produced. The resolution required to adequately sample the 

interference pattern, however, is inversely proportional to the path length (group delay) difference between the two 

paths, since the period of the interference pattern decreases as the path length difference increases. As a result, a 

spectrometer with limited resolution can only resolve the fringes when this difference is sufficiently small. In 

spectral interferometry, the group delay may either be balanced at a wavelength outside the measurement range or at 

a wavelength within the measurement range. When balanced outside the measurement range the technique is 

referred to as unbalanced spectral interferometry (USI) [29] [41] and when balanced within the measurement range 

the technique is referred to as balanced spectral interferometry (BSI) [13] [30] [48]. In order to reduce the resolution 

required of the spectrometer (or spectrum analyzer), both USI and BSI based techniques employing a low coherence 

setup require a variable delay line to closely match the test and reference paths (so that the period of the interference 

fringes can be resolved by an optical spectrum analyzer or spectrometer). For BSI, the advantage of using the delay 

line is that second order dispersion may be directly obtained from the interference pattern [13]. The disadvantages, 

however, include the need for multiple spectral scans to produce a dispersion plots (time consuming) and that a 
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precision translation stage (expensive) is required to vary the path length in small increments. For USI, the only 

advantage of using a delay line is that it reduces the path length (group delay) between the test and measurement 

paths, which leads to a reduction in the resolution required to adequately sample the spectral interference pattern. 

USI, however is capable of generating first order dispersion (group delay) plots from a single spectral scan (fast 

measurements). The disadvantage of USI, however, is that it cannot measure second order dispersion directly from 

the interference pattern but must extract it indirectly from a fit to the group delay plot. Virtual reference 

interferometry (VRI) was first introduced in Chapter 3 to combine the single scan measurement capability of USI 

with the direct second order measurement capability of BSI. The VRI technique discussed in Chapter 3 and Chapter 

4, and the DVRI technique discussed in Chapter 5, used a common path interferometer configuration to characterize 

fibers several tens of centimeters in length. This configuration required high spectral resolution and broad 

bandwidth, which could only be achieved using a tunable laser with a built-in wavemeter. The tunable lasers used in 

these experiments had a wavelength resolution of 0.1pm. These tunable lasers may not always be available, they 

may not be available in the wavelength range of interest, or they may be too costly. As a result, this chapter 

describes how a VRI based measurement may be employed in a low coherence interferometry setup that does not 

require high wavelength resolution. For these situations, an alternate setup for VRI that employs a low coherence 

setup with a broadband source and spectrometer (or spectrum analyzer), is proposed in this chapter. The use of the 

VRI technique in a low coherence setup is referred to as low-coherence virtual reference interferometry (LC-VRI). 

In LC-VRI, instead of balancing the paths at a wavelength within the scan range, as in BSI, the paths are balanced at 

a wavelength just outside the measurement range (as in USI or VRI); close enough that the interference fringes may 

be resolved by a low resolution spectrometer (or spectrum analyzer) but far enough that the balance point is still 

outside the scan range. The use of the VRI technique in a low coherence setup involves the acquisition of an 

unbalanced spectral interference pattern, generation of a virtual interference pattern (produced by simulating a free 

space interferometer with a group delay imbalance equal to the imbalance of the physical interferometer), followed 

by point-by-point multiplication of the two interference patterns. This results in the generation of an amplitude-

modulated second order interference pattern in which the phase of the amplitude modulation is equivalent to that 

produced by physical balancing in BSI. Since the balance wavelength depends on the length of the simulated 

imbalance, it may be varied computationally rather than physically to generate direct first and second order 

dispersion plots. This has the advantage of single scan characterization and eliminates the need for precision, 

micron-level control to adjust the path length between scans (as required by BSI), as discussed in Chapter 3.4.4. 

This is possible since the reference path only has to be adjusted once to within approximately 1 mm of the test path. 

This chapter develops LC-VRI as a simple, convenient and low cost alternative to BSI for the dispersion 

characterization of short length fiber.   
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6.2 Theory 

A typical setup used in low-coherence spectral interferometry for characterizing chromatic dispersion in short length 

optical fiber is presented in Fig. 6-1.  

 
Fig. 6-1.  Experimental setup for both a BSI and LC-VRI measurement. Adapted (re-colored) with 

permission from [69]. 

The interference pattern produced by the setup in Fig. 6-1 (for simplicity, assume the coupler arms are exactly equal 

in length so that the need for calibration is avoided) is described in Eq. 6-1.       

           2

Real , 0 2 2cos 2o f f o air oI U L k L         Eq. 6-1 

where fL  is the length of the test fiber, f
 is its propagation constant, airL  is the length of a free space (air) path 

and  ok  is the propagation constant in free space. The main difference between VRI, as described in the previous 

chapters, and LC-VRI is the degree of group delay imbalance between the arms of the interferometer (i.e.

 0g f airN L L  , where  0gN  is the group index of the fiber at 0 ) between the test and reference path lengths 

(relative separation between the phase fronts 0U  and 1U ) to allow for resolution of the interference pattern using a 

low resolution spectrometer. The real interference pattern is still produced by the phase fronts 0U  and 1U . In the 

setup in Fig. 6-1, the group delay in the test fiber may be balanced by that in the reference path at some point either 

within the spectral range scanned by the spectrometer (as in BSI) or somewhere near the spectral range scanned by a 

spectrometer (as in USI). In BSI the group delay in the test path is balanced by that of the reference path at a 

wavelength within the scan range (i.e.  0 0g f airN L L    at the balance wavelength 0 ), resulting in the 

interference pattern shown in Fig. 6-2(a). Here, the first and second order dispersion of the test fiber may be 

extracted from the balanced spectral interference (BSI) pattern as described in Chapter 2.4.2 (as well as in [13]). In 

LC-VRI the reference path length is chosen such that the test path is balanced at some wavelength just outside the 

scan range (partial balancing as in USI) to reduce the resolution requirements in the spectrometer by keeping 

 0g f airN L L   small. The relationship between the average period of the interference fringes and the degree of 

imbalance is given as     2
0 02avg g f airT N L L    so the interference fringes have a larger period that can 

be resolved by a low resolution spectrometer when the imbalance is small, as illustrated in Fig. 6-2(b). For example, 
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a spectrometer with a resolution of 0.2 nm is capable of adequately resolving and sampling the interference pattern 

produced by a path length difference between the test and reference path of  0g f airN L L   = 1 mm. 

 
Fig. 6-2.  Interference pattern produced in (a) BSI where the reference path length is chosen to balance the 

interferometer at a wavelength within the scan range (at 1525 nm) (b) USI and LC-VRI by choosing a 

reference path length that balances the interferometer at a wavelength outside (to the left of) the scan range. 

Used with permission from [69].  

The following analysis assumes a reference path that is shorter than the test path and that the length of the reference 

path must be physically increased by an amount    0v o g f airL N L L    to move the balance wavelength from 

a point outside the scan range to a point within it (if BSI was used). Furthermore, the wavelength o  is a 

wavelength within the scan range at which the test and reference arms may be balanced either physically or 

virtually. This balance point may be varied within the scan range by small changes to the value of  v oL  to 

produce dispersion plots as a function of wavelength. In LC-VRI, the value of the interference pattern simulated by 

a virtual reference with length  v oL   is given by  
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       , cos 2virtual o o v oI k L    
 

Eq. 6-2 

Point-by-point multiplication of the interference pattern in Eq. 6-1 with the simulated interference pattern in Eq. 6-2 

produces a second order interference pattern illustrated in Fig. 6-3 with an amplitude modulation described by   

           Amp.mod 0 0,  cos 2 f f o air vI L k L L         Eq. 6-3 

The amplitude modulation in the second order interference pattern has a phase that is equivalent to that produced by 

physical balancing in BSI. This can be seen by examination of the first order interference pattern produced by BSI 

shown in Fig. 6-2(a) and observing that it is equivalent to the amplitude modulation on the second order interference 

pattern in Fig. 6-3. The amplitude modulation can be extracted from the second order interference pattern via a low-

pass filter. The advantage of the LC-VRI technique over BSI is that since  v oL   is simulated its value may be 

varied computationally (by any arbitrarily small amount) to sweep the location of the balanced wavelength of the 

amplitude modulation o across various wavelengths within the scan range. Therefore, using a single spectral scan 

(Eq. 6-1), BSI equivalent results (direct measure of both first and second order dispersion) may be produced (by 

varying  v oL   in Eq. 6-2 and Eq. 6-3) without the need for high precision control of the reference path length 

(i.e. the reference path length can be incremented by an arbitrarily small amount to vary the balance point by small 

increments in the wavelength location, see Chapter 3.4.4). This both reduces experimental run time and eliminates 

the requirement for a high cost precision translation stage.   

 
Fig. 6-3.  Second order interference pattern produced by point-by-point multiplication of an interference 

pattern produced by an unbalanced interferometer with a virtual reference interference pattern produced by 

simulating a path length equal to the physical imbalance. The amplitude modulation (solid black line) is 

obtained by applying a low-pass filter to the second order interference pattern (solid grey line). The solid 

black line is equivalent to the interference pattern produced by BSI in Fig. 6-2(a). Adapted (re-colored) with 

permission from [69]. 



Chapter 6:  Low-coherence virtual reference interferometry www.inometrix.com

  96 

 

 

6.3 Experiment 

The LC-VRI technique is validated experimentally by comparison of measurement results to BSI based dispersion 

measurements as well as to manufacturer's specifications (simulation). For this comparison LC-VRI and BSI are 

used to characterize a 73.5 cm-length of SMF28 fiber using the setup in Fig. 6-1. The physical length difference 

(group delay difference) between the test and reference paths (i.e. the phase fronts 0U  and 1U )  from a balance at 

1525o  nm is 0.7 mm. This enables adequate sampling of the interference pattern by the optical spectrum 

analyzer used in this experiment (ANDO AQ6317B) with a resolution setting of 0.2 nm, scanned between 1380 and 

1670 nm. Alternatively, a low cost spectrometer with similar resolution [70] [71] could have been used, had it been 

available for this experiment. The LED source used in this experiment is the Agilent 83437A. The results of first and 

second order dispersion made using LC-VRI and BSI compared to the manufacturers specification [68] are 

illustrated in Fig. 6-4(a) and Fig. 6-4(b). The standard deviation of the group delay (with respect to a second order 

polynomial fit) is 5.8×10
-3

 ps for the BSI plot and 5.6×10
-3

 ps for the LC-VRI plot. The standard deviation of the 

second order dispersion (with respect to a linear fit) is 1.4×10
-4

 ps/nm for the BSI plot and 1.1×10
-4

 ps/nm for the 

LC-VRI plot.   

 
(a) 

 
(b) 

Fig. 6-4. (a) Group delay and (b) dispersion parameter measurements on a 73.5 cm length of SMF28. Results 

compare LC-VRI, BSI and simulations using the manufacturer's specification [7]. Adapted (re-colored, 

organized horizontally and secondary axis added to (b)) with permission from [69]. 

6.4 Conclusion 

In this chapter, the LC-VRI technique is introduced as a simple and convenient alternative to BSI for fiber 

dispersion characterization. The advantages, compared to BSI, that were discussed include the ability to produce 

results of both first and second order dispersion from a single (physical) spectral scan, which reduces experiment run 

time, as well as eliminates  the need for precision control of the reference path length (reducing the cost of the 

translation stage). This chapter illustrates how the VRI technique increases the practicality, versatility and utility of 

dispersion measurements produced in low-coherence interferometric setups.  
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Chapter 7.  
Conclusions & future directions 

This chapter concludes this thesis by discussing the academic and practical significance of the virtual reference 

technique. The chapter begins by considering the impact of the introduction of the idea that an interferogram can be 

used as a reference. It then discusses how this paradigm shift enables 'balanced' dispersion extraction techniques to 

be used to directly characterize first and second order dispersion on unbalanced spectral interferograms. This chapter 

then discusses the practical significance of the virtual reference to both common path and dual arm configurations. 

Furthermore, it discusses the impact of the virtual reference to both academia and industry and showcases the first 

commercial application of this technology in a commercial short length chromatic dispersion test system. This 

chapter also outlines the contribution of this work to the academic (accepted journal publications) and industrial 

literature (granted patents). The chapter concludes the thesis by looking forward to prospective future applications of 

this technology.   

7.1 A paradigm shift - the interferogram as reference 

The virtual reference technique is a hybrid between balanced spectral interferometry (BSI) and unbalanced spectral 

interferometry (USI) since the raw interference pattern is produced by USI but the dispersion extraction technique 

used is that of BSI. As discussed in Chapter 2.4.2, balanced techniques (i.e. BSI, VRI, and DVRI) enable direct 

measurement of both first and second order dispersion by measuring the difference in the phase delay between a 

wave front in the test and the reference paths. This is done by interfering the two wave fronts with each other to 

produce an interferogram. The interferogram is an intensity profile that records the relative phase delay between the 

two wave fronts as a function of wavelength. Since the phase delay of the wave front in the reference path is known, 

it can be combined with the measured phase difference to extract the phase delay in the test path. This is the 

standard paradigm in which the reference is a wave front with known phase delay.  

The goal of virtual reference interferometry is to eliminate the need for a reference path altogether, since variable 

delay lines are very difficult to construct and operate (as discussed in Chapter 2.4.2). However, since standard 

optical detectors can only measure the intensity of a wave front and are not sensitive to its phase, one cannot 

measure the phase of a test wave front and combine it with a simulated wave front to produce an interference 

pattern. The standard paradigm for the reference, therefore, cannot be used.  

The virtual reference is a paradigm shift from the reference as a wave front with known phase delay to the reference 

as an interferogram with a known phase delay difference. The difference measurement recorded in the amplitude 

modulation of the virtual reference interferogram, therefore, is not the phase delay difference between the test and 

reference paths but the second order difference (i.e. difference of the difference) of the phase delay between the test 

and reference paths. Using this paradigm, interference patterns (which can be recorded using standard optical 

detectors) may be interfered with simulated interference patterns to produce second order interference patterns 
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(interference of interferograms) which results in an amplitude modulated interference pattern with a phase that gives 

the difference in the phase delay difference between the two paths. This capability is significant on a fundamental 

level, since it enables difference measurements (used in balanced spectral interferometry) to be used on an 

interference pattern produced with an unbalanced interferometer. The difference measurement based extraction 

techniques used in balanced spectral interferometry were shown to be superior to unbalanced techniques in Chapter 

2.4 because they can measure both first and second order dispersion directly from the interferogram and the 

resolution (scatter) is independent of the window size. This is now also possible for virtual referenced techniques.  

7.2 A difference approach 

Conventional techniques for extracting dispersion from an unbalanced spectral interference pattern (i.e. the USI 

based techniques discussed in Chapter 2.4.1) either attempt to extract the phase or the group delay directly using 

Fourier transform techniques. Since the techniques that attempt to measure the phase directly are highly susceptible 

to noise, techniques that attempt to measure the group delay directly are preferred. These techniques attempt to 

determine the single frequency sinusoid that best fits the measured interference pattern (within a window) using the 

Fourier transform  

     2
Real Real

jI I e d     Eq. 7-1 

and locating the frequency component with the largest amplitude. The problem with this approach, however, is that 

the raw unbalanced interference pattern is not a single frequency sinusoid but an aperiodic sinusoid with a phase that 

varies as a function of wavelength. Therefore, comparison with single frequency sinusoids will always have error 

since it ignores the phase variation of the raw unbalanced interferogram, as illustrated in Fig. 7-1(a). In virtual 

reference interferometry, however, the aperiodicity of the measured interference pattern is used to extract the phase 

information. This is done by multiplying the raw unbalanced interference pattern by a single aperiodic sinusoid (the 

virtual reference sinusoid) in which the phase varies (in a known manner) to produce an amplitude modulated 

interference pattern described by  

        Amp. Mod. measured virtual refererencecosI         Eq. 7-2 

This enables the information about the phase difference    measured virtual refererence    between the two paths 

to be directly extracted from the resulting amplitude modulation, as in Fig. 7-1(b).  
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Fig. 7-1. Comparison of unbalanced techniques (which measure the degree of similarity or 'best fit' of the 

measured interference pattern to single frequency sinusoids, ignoring the phase variation) to virtual reference 

techniques that directly utilize the phase variation to directly measure phase difference (from the resulting 

amplitude modulation).  

Therefore, where conventional unbalanced spectral interferometric techniques ignore the phase (frequency) 

variation of the raw interference pattern, virtual reference techniques use the phase (frequency) variation to make 

the measurement. The approach taken by unbalanced spectral interferometric techniques is therefore to measure the 

degree of similarity between the test and reference by finding the best fit whereas the approach taken in the virtual 

reference technique is to measure the difference directly. This approach (i.e. measuring difference directly) enables 

the direct measurement of second order dispersion, since the effect of the first order dispersion can be cancelled out 

by using a reference path with a first order dispersion equal to that in the test path. This cancelling of the first order 

dispersion leaves the second and higher order dispersion effects visible in the interferogram, so that they can be 

measured directly.   

7.3 Practical significance  

Origins 

Virtual reference interferometry has its roots in a practical problem I encountered while working in industry. Before 

the concept of the virtual reference, the only way to directly (and most accurately) measure second order dispersion 

in short length fiber was to use BSI. The problem with using BSI, however, is the need for a physical reference path 

(see Chapter 2.4.2). At first, I had no concept of why this was such a difficult practical problem to solve. I thought 

that I could simply purchase a commercially available delay line. However, to my surprise, I discovered that there 
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were no fiber coupled optical delay lines with travel paths longer than a few centimeters. An optical delay line of a 

few centimeters was at least an order of magnitude too small to characterize fibers a few tens of centimeters long, so 

I had a problem.  

The next option I considered was to see if an optical contract manufacturer could build one for me. So I decided to 

contact several of the small and large optical contract manufacturing firms. The response I received from each of 

them was that either they could not build such a system or that it would cost several hundred thousand dollars to do 

it. This closed the door on that option very quickly. The only option I had left was to try to build the variable 

reference path myself. It was during the ensuing 8 month process that I would realize just how difficult the 

undertaking would truly be (see Chapter 2.4.2) and the extraordinary level of manufacturing precision that would be 

required. Although I would ultimately be successful in building an optical delay line that was rugged enough to be 

transported and that could maintain its alignment over its entire 20 centimeter travel path (folded path gives a 40 cm 

total length), I would soon encounter several other problems.  

Although I had successfully built a variable optical delay line that could fit inside a reasonably sized and portable 

box, the entire process for balancing the interferometer (i.e. making the reference path length equal to the fiber being 

tested) was a very time consuming process. At each incremental step toward the balance, the reference path length 

had to be adjusted and the spectrum scanned to see if balance had yet been achieved. This process usually took 

between 45 minutes to 2 hours. When balance was finally achieved and measurements could start being made, each 

point in the plot required its own separate scan. This too was yet another time consuming process. Furthermore, the 

spacing between the points in the plot was determined by the smallest increment that the translation stage was 

capable of resolving. So the resolution of the plot was also limited.  

I was starting to wonder if the ability to directly measure second order dispersion (accurately) was worth all the 

trouble of building and using the reference path. If direct measurements were not important I could eliminate the 

reference path altogether and just use a common path configuration with USI to measure the group delay directly 

(see Chapter 2.4.1). This would also speed up my measurements since I would not have to spend time balancing the 

interferometer and I could produce first order dispersion plots with a single spectral scan and then get the second 

order dispersion plots from a fit to the group delay curve. The problem with this, I discovered, was that because of 

the scatter in the group delay curve the second order dispersion results depended on the type of fit I chose (see 

Chapter 2.4.1). Furthermore, depending on the size of the window chosen for the Fourier transform I had different 

amounts of scatter in the group delay plot. There was no way to know the size of the widow that would minimize the 

scatter. As a result, I still preferred direct measurements of second order dispersion. What I really needed was a way 

to measure second order dispersion directly but with the ease and speed of unbalanced spectral interferometry. It 

was from this necessity that the virtual reference was invented.   
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Advantages of the virtual reference  

In virtual reference interferometry, a simulated interferogram is the reference. Since optical detectors can be used to 

collect a 'test' interferogram, a 'reference' interferogram can be simulated and combined with the test interferogram 

instead of using a physical reference path. This enables difference measurements (so that both first and second order 

dispersion can be measured directly, as in balanced interferometry) using an unbalanced interferometer. This has 

several practical advantages that depend on the physical configuration of the interferometer used to generate the 

unbalanced interference pattern. Virtual reference interferometry may be used to convert a conventional 

interferometer to a virtually referenced one. For example an unbalanced spectral interferometer employing a 

common path configuration may be converted to employ a virtual reference (as shown in Chapters 4 to 7) or a dual 

arm balanced interferometer may be slightly imbalanced so that it may employ a virtual reference (as in Chapter 6). 

This conversion provides several advantages compared to conventional techniques for both dual arm and common 

path configurations.  

Dual arm configuration 

The dual arm configuration is typically used in an academic setting where a reference arm can be constructed on an 

optical table. The advantage of using a dual arm configuration (i.e. Michelson, Mach Zehnder interferometers) is 

that it reduces the wavelength resolution needed to acquire an interferogram by reducing the path length difference 

between the test and reference paths. This configuration is useful when high resolution tunable lasers are 

unavailable, not available in the wavelength range of interest or too costly. The advantage of using virtual reference 

interferometry in this type of Low-coherence setup (as discussed in Chapter 6), is that it eliminates the need for a 

costly precision variable delay line since the reference path length only needs to be adjusted so that it is near the 

length of the test path (coarse tuning). This is because the fine tuning needed to produce a dispersion plot is 

performed by the virtual reference. Elimination of the need for a tunable laser and high precision variable delay line 

lowers the cost envelope of the virtual reference technique. The ability to work with low cost broadband sources and 

spectrometers opens up possibilities for applications in new wavelength ranges. Furthermore, direct first and second 

order dispersion measurements can be obtained from a single spectral scan (saving time).   

Common path configuration 

The common path configuration is best used in commercial applications, where avoiding the need to use a folded 

reference path is essential. If a common path configuration is used (Chapter 2.4.1), the need for a reference path is 

eliminated altogether. This is significant since, as discussed in Chapter 2.4.2, a reference path is costly, difficult to 

set up, time consuming to operate and requires calibration. The elimination of the variable delay line (or the 

reference path itself) has the following practical benefits: It reduces the cost of the measurement, since high 

precision stages can be very expensive. It also eliminates the need for optical components such as collimators and 

mirrors, which are also quite costly. Furthermore, it eliminates the need for a difficult optical alignment and 

coupling procedure. As discussed in Chapter 2.4.2 the alignment process is very difficult since the number of 
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degrees of freedom increases with the number of lenses and mirrors used and since the free space to fiber coupling 

requires the fiber to be positioned exactly at the focal point of the lens. These two points are especially important in 

industry since free space delay lines can become misaligned during shipping. Elimination of the reference path also 

removes the need for calibration of the dispersion of the optical components (i.e. fiber, lenses, mirrors, etc.) in the 

reference path. This eliminates the associated calibration error that would otherwise be introduced into 

measurements (dispersion in the virtual reference path is known exactly), making the technique more accurate than 

balanced spectral interferometry (which uses a physical reference path for which there is uncertainty in the 

dispersion). Another benefit to the elimination of the reference path is that it reduces both the weight and footprint 

of the device, which is important for both shipping and storage considerations. Furthermore, the isolation and 

stabilization mechanisms required to prevent environmental fluctuations from affecting the reference path are also 

not required.  

Both dual arm and common path configurations 

The use of a virtual reference significantly reduces experiment run time since the reference can be tuned virtually to 

enable the extraction of first and second order dispersion as a function of wavelength. This compares to balanced 

spectral interferometry which requires a spectral scan for every point in the first and second order dispersion plots.  

A summary of the practical advantages of using a virtual reference (compared to conventional alternatives) is given 

in Table 7-1. The important highlights are that USI based techniques (USI-WFT using windowed Fourier 

transforms, see Chapter 2.4.1) cannot be used to directly measure the second order dispersion in both dual arm and 

common path configurations. Furthermore, the resolution of the group delay plot depends on the window size 

chosen (as discussed in Chapter 2.4.2) which is always less than the resolution in BSI (as discussed in Chapter 2.4.3) 

or VRI since the optimum widow size is unknown. This means that the scatter in the group delay plot will be larger 

than in balanced techniques (BSI or VRI based techniques). Dual arm techniques benefit from the ability to use 

broadband source, which are generally low cost in comparison to the broadband tunable lasers required by USI and 

VRI when the physical interferometer used is in the common path configuration. With Dispersive VRI it is possible 

to reduce the cost of the tunable laser by allowing tunable lasers with smaller bandwidths to be used. In BSI the 

reference can be quite expensive since a precision stage is required, whereas in the common path configuration no 

reference is required at all for USI, VRI or DVRI. One benefit of using LC-VRI (i.e. VRI in a low coherence dual 

arm configuration) is that a precision translation stage is not required (which reduces the cost of the reference path).   
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Table 7-1:  Summary of practical advantages of using a virtual reference for first and second order 

dispersion measurements. 

 Dual arm  

(Academic applications where a lab bench 
or optical table is available) 

Common path  

(Commercial applications) 

BSI USI LC-VRI LC-DVRI USI VRI DVRI 

High precision group delay measurement  
(i.e. independent of window size) 

√  √ √  √ √ 

Direct first and second order dispersion meas. √  √ √  √ √ 

High resolution group delay plot √  √ √  √ √ 

Low-cost source  √ √ √ √   √* 

Low-cost detection √ √ √ √ √ √ √ 

Low cost reference    √** √** √** √ √ √ 

High speed (single scan)  √ √ √ √ √ √ 

Accuracy (no calibration error)     √ √ √ 

Ease of setup     √ √ √ 

Portability (alignment)      √ √ √ 

Light weight     √ √ √ 

Small footprint     √ √ √ 
* Compression of bandwidth allows for use of sources with smaller bandwidth which may be low-cost 

** Precision translation stage not required 

7.3.1 Significance to researchers in academia and industry 

The virtual reference interferometer is presented as an alternative to conventional USI and BSI. This new 

interferometer is useful as a tool for the characterization of the first and second order dispersion in short length 

optical fibers. In the common path configuration, the technology eliminates the need for a reference arm. This is 

very convenient, since the difficulties associated with the setup and operation of the reference path are eliminated. It 

also makes measurements more accurate (elimination of calibration error) and fast (single scan characterization). 

This new type of interferometer will be useful to the academic community as a tool for simplifying the measurement 

of chromatic dispersion so that researchers can spend more time on their research and waste less time setting up and 

running difficult dispersion measurements. This tool is expected to have an impact on the development of specialty 

fibers and short length optical components.   
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7.4 Commercial significance  

7.4.1 Current application: chromatic dispersion test 

Virtual reference interferometry is currently being used in a commercially available dispersion test and measurement 

system called the Virtual Reference Dispersion Analyser, available from Inometrix, Inc. 

(http://www.inometrix.com). Images of the system are illustrated in Fig. 7-2.  

 
 

 
 

 
 

 

(a) 
 

(b) 

  

(c) (d) 

Fig. 7-2.  Images of the Virtual Reference Dispersion Analyser from Inometrix Inc. 
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7.5 Contributed publications and patents 

The study and development of Virtual reference interferometry has led to the publication of several contributed 

papers and one patent in the field of interferometry and chromatic dispersion test. A list of contributed publications 

follows.  

Accepted Papers 

1. M. A. Galle, S. S. Saini, W. S. Mohammed, and Li Qian, ‘Chromatic dispersion measurements using a 

virtually referenced interferometer,’ Optics Letters 37(10), 1598-1600 (2012). 

2. M. A. Galle, S. S. Saini, W. S. Mohammed, and Li Qian, ‘Virtual reference interferometry: theory and 

experiment,’ J. Opt. Soc. Am. B 29(11), 3201-3210 (2012). 

3. M. A. Galle, S. S. Saini, W. S. Mohammed, Pierre Sillard, and Li Qian, ‘Simultaneous dispersion 

measurements of multiple fiber modes using virtual reference interferometry,’ Optics Express 22(6), 6391-

6399 (2014).  

4. M. A. Galle, E. Y. Zhu, S. S. Saini, W. S. Mohammed, , and Li Qian, ‘Characterizing short dispersion-

length fiber via dispersive virtual reference interferometry,’ Optics Express 22(12), 14275-14284 (2014). 

5. M. A. Galle, and Li Qian, ‘Low-coherence virtual reference interferometry for chromatic dispersion 

characterization,’ Accepted by Photonics Technology Letters (detailed citation not yet available) 

Patents granted 

1. M. A. Galle, ‘System and method for a virtual reference interferometer’,  Patent number 8797539, Issue 

date 08/05/2014.   

7.6 Prospective & future applications 

Interferometers are used in many applications including testing, sensing and imaging. This section presents some 

forward looking possibilities for the virtual reference technique. Some of the capabilities of virtual referenced 

interferometers that were demonstrated for chromatic dispersion test are now shown to be potentially useful for 

similar measurements in other applications. The idea some of these potential applications is to adapt (convert) 

existing interferometers so that they can use virtual referencing.   

Direct measurements of third (and higher) order dispersion 

A dispersive virtual reference was used to enable compression of the interference pattern using DVRI. However, a 

potential future application of this technique is to use the dispersive virtual reference to obtain the third (and higher) 

order dispersion directly from the interference pattern. Both VRI and DVRI balance the first order dispersion in the 

test path with that of the reference path. This cancels out the effect of first order dispersion in the resulting 

interference pattern leaving only the effects of second and higher order dispersion in the resulting interference 

pattern. As a result there is direct access to the second order dispersion. One may take this approach one step further 

and use a dispersive virtual reference to cancel both first and second order dispersion in the test fiber, enabling direct 

access to the third and higher order dispersion. One may then continue this process to access higher order dispersion 

directly. Since this is impossible with physical referencing, the possibility to make such measurements shows the 

power of the paradigm shift introduced by the virtual reference technique.  
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Calibration of existing interferometers 

One immediate application that a virtual reference can be used for is to calibrate existing dual arm interferometers 

and measure the dispersion imbalance between the test and reference arms. In this case, a large imbalance in the 

dispersion length between both arms may be measured using VRI and if the imbalance is too small for the available 

bandwidth then DVRI (Chapter 5) may be employed. An example of an application where dispersion must be 

calibrated and is very important is within an interferometer used for Optical Coherence Tomography, illustrated in 

Fig. 7-3. Since the wavelength range used by these systems is around 1300 nm such a system could be calibrated 

using a broadband source in this wavelength range (via LC-VRI which was demonstrated in Chapter 6) or by a 

tunable laser in this wavelength range. Tunable lasers in this wavelength range are available from Agilent 

Technologies (i.e. Agilent 81600B option 130 [72]).  

 
Fig. 7-3.  (a) An illustration of a typical dual arm interferometric setup used in optical coherence tomography 

and (b) a possible setup for calibration of the dual arm interferometer using a dispersive reference to measure 

the difference in second order dispersion between the test and reference path. 

Depth based imaging 

In Chapter 3 the virtual reference was shown to be capable of characterizing a fiber cascade. This same capability 

was shown to enable the characterization of multiple fiber modes in a Few-mode fiber in Chapter 4. A possible 

extension of this capability could be used to develop depth based imaging using VRI, as illustrated in Fig. 7-4.  
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Fig. 7-4.  Capabilities of virtual reference interferometry demonstrated for dispersion characterization of a 

(a) fiber cascade in Chapter 3 (b) few-mode fiber in Chapter 4 could be potentially extended for (c) depth 

based imaging.  

Group index and second order dispersion based multi-parameter sensing 

Similar setups used to characterize the chromatic dispersion in fiber could be used to produce a fiber sensor for 

measuring physical parameters. Since two parameters (first and second order dispersion) are measured it may be 

useful for applications in multi-parameter sensing (i.e. temperature, pressure, stress-strain or to measure changes in 

group index or second order dispersion directly). A potential setup for such a system is presented in Fig. 7-5. Both 

DVRI (Chapter 5) and LC-VRI (Chapter 6) would be very useful for this type of application. DVRI would allow 

devices with limited bandwidths to be used and LC-VRI (or LC-DVRI) would allow low-cost spectrometers and 

broadband sources to be used, instead of tunable lasers, to open up wavelength ranges where tunable lasers do not 

currently exist and to reduce costs.  Furthermore, compact narrowband elements (i.e. fiber Bragg gratings) might 

also be used as sensing elements, where environmental changes could be detected via characterization using VRI or 

DVRI (as demonstrated in Chapter 3 and Chapter 5). 

 
Fig. 7-5.  Potential configuration of a fiber based multi-parameter sensor employing a virtual reference. A 

twin-hole fiber could be used to bring the evanescent field of light in the core into contact with the gas/liquid 

over the entire length of the fiber, increasing the interaction length.  
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7.7 Conclusion 

Virtual reference interferometry is a paradigm shift in our thinking about what a reference can be. The technology 

has been developed for the dispersion characterization of short length fiber and optical components, bringing 

advantages and new capabilities over conventional techniques. In chromatic dispersion test, the technology is 

expected to have an impact on the development of specialty fibers and optical components, where accurate short 

length characterization is of critical importance. The future of the virtual reference looks to be very promising, as 

tunable lasers (used in the common path configuration) are becoming more economical and the use of the virtual 

reference eliminates the need for a physical reference path altogether. This is an especially important impairment to 

the economical commercial development of interferometric systems. Furthermore, spectrometers and broadband 

sources (used in the dual path VRI configuration in Chapter 6) are already economical and have widespread use 

across a multitude of interferometric applications for which a virtual reference can be employed. One of the most 

immediate potential applications of this technology, outside of dispersion test, is the use of the virtual reference to 

calibrate or modify the operation of existing interferometric systems. 
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Appendix A: Detailed background 

Chromatic dispersion is the phenomenon that describes the wavelength or frequency dependence of the refractive 

index of a material [6]. This variation may be caused either by the optical properties of the material itself (material 

dispersion) or by the optical confinement produced by the geometry of a waveguide (waveguide dispersion). The 

combined effect that includes both waveguide and material dispersion is referred to as the total dispersion. In this 

appendix the physical cause and mathematical description of chromatic dispersion are identified and developed.    

A.1. Material dispersion 

Material dispersion refers to the wavelength (frequency) dependent response of the electron cloud of atoms or 

molecules to transiting electromagnetic waves. Material dispersion is caused by atomic resonance, which causes 

atoms/molecules to absorb and re-radiate electromagnetic waves more efficiently as the frequency of the radiation 

approaches a certain characteristic frequency   for that atom/molecule (i.e. the resonance frequency) [6].    

An impinging electric field distorts the electron cloud of an atom/molecule polarizing it by an amount that depends 

on the relative difference between its frequency o  and the resonance frequency  of the atom/molecule [6]. The 

closer the frequency of the electric field is to the resonance of the atom/molecule the greater the polarization and 

displacement of the electron could. The relative displacement between the positive nucleus and the negative electron 

cloud of the atom/molecule can be modeled as a Lorentz Oscillator and described by [6]      

 2 2

/

( )

e e
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q m
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 Eq. A-1 [6] 

where eq is the charge of the electron, em  is its mass,  is the resonance frequency of the particular atom/molecule, 

o is the particular frequency of the electromagnetic radiation, E is the electric field vector and x  is the 

displacement vector. The polarization induced in the electron cloud is defined by  

 ( )e oP Nq x E     Eq. A-2 [6] 

where   is the permittivity of the material, o is the permittivity of free space and N is the number of electrons per 

unit volume. The index of refraction ( )on  at a particular wavelength o  is determined by the ratio between the 

permittivity in the material and the permittivity of free space, which can be determined using Eq. A-1 and Eq. A-2 as 

the dispersion equation given by 
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 Eq. A-3 [6] 

The index of refraction of the material in Eq. A-3 applies to light travelling through bulk material. It shows that the 

index of refraction observed by an electromagnetic wave of frequency o is inversely proportional to how close its 
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frequency is to the resonance frequency of the atom/molecule,  . From the refractive index the group index may be 

determined by  

   ( )
oG o o oN n dn d       Eq. A-4 [6] 

Conversion from the frequency domain to the wavelength domain may be achieved using 2o oc    (where c  is 

the speed of light in vacuum and o  is the wavelength of light in vacuum) and using the chain rule to convert 

o
dn d   to 

o
dn d  . The resulting expression in terms of the wavelength in vacuum is given by   

   ( )
oG o o oN n dn d       Eq. A-5 [6] 

The second order dispersion of a bulk material may then be determined from the slope of the group index plotted as 

a function of wavelength as described by  
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[10] 

A.2. Waveguide dispersion 

Waveguide dispersion is the variation in the velocity of different frequencies of light due to waveguide geometry. 

This variation is due to changes in the index of refraction caused by the confinement of light in an optical mode 

[10]. Although there are many possible geometries for a waveguide we will restrict our discussion of possible 

waveguides to a step index optical fiber with the cross sectional geometry illustrated in Fig. A-1. The waveguide 

dispersion is a function of the core index  1n  , the cladding index  2n   and the core radius a , where the core 

index is slightly higher than that in the cladding so that the optical field is mostly confined within the core.     

 

Fig. A-1. Cross sectional geometry of an optical fiber (core size exaggerated). 

The index experienced by a particular mode in an optical fiber is known as the effective index  effn   because the 

mode propagates within both the core and cladding region and therefore experiences an index that is between these 
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two values. The effective index  effn   experienced by a particular mode in an optical fiber may be obtained by 

solving Maxwell's Equations for the transverse electric (TE) and transverse magnetic (TM) fields to obtain the wave 

equation in cylindrical coordinates. Solutions are then obtained by applying appropriate boundary conditions in the 

core, cladding and at the interface between the core and cladding [73].  

We begin by defining the terms in Maxwell's equations and define the electric flux density D  (in coulombs per 

meter squared) and the magnetic flux density B  (in amperes per meter squared) as  
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Eq. A-7 

[73] 

where E is the electric field (in volts per meter) and H  is the magnetic field (in amperes per meter). The 

permittivity   and the permeability   are defined by  
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Eq. A-8 

[73] 

where o  and o  are the permittivity and permeability of free space and r  and r  are the relative permittivity and 

permeability of the material. Since an optical fiber is non-magnetic this means that 1r  . If we assume that the 

electromagnetic field oscillates at a single angular frequency denoted by o  then the fields may be expressed in 

time independent phasor form given by [73]. 

     , Re e j tE r t E r   Eq. A-9 

     , Re e j tH r t H r   Eq. A-10 

     , Re e j tD r t D r   Eq. A-11 

     , Re e j tB r t B r   Eq. A-12 

Where the time independent phasor forms are given by , ,DE H  and B . Maxwell's Equations are empirically 

derived relationships between the electric and magnetic fields. They are summarized for an optical fiber (which is a 

non conductive non-magnetic medium) by      

 oE j B j H       Eq. A-13 

 H j D j E      Eq. A-14 

 0D E     Eq. A-15 

 0B H     Eq. A-16 

The wave equation for both the electric and magnetic field may be obtained by applying a vector rotation operator 

  to Eq. A-13 and Eq. A-14 and using the vector formula given by   
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     2A A A      
Eq. A-17 

[73] 

where 2 is a Laplacian, given by Eq. A-18 for a Cartesian coordinate system and by Eq. A-19 for a cylindrical 

coordinate system. 
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Eq. A-19 

[73] 

For a waveguide with dimensions that do not vary in the z-direction it is convenient to define the Tangential 

components of the Laplacian as   
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Eq. A-20 

[73] 
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Eq. A-21 

[73] 

After applying the vector rotation and assuming that the relative permittivity and permeability of the medium is 

constant (assuming the weakly guiding approximation may be used since the refractive index between the core and 

cladding is small) results in the Helmholtz or Wave Equation for each field given by [73]. 

 2 2 0E k E    Eq. A-22 

 2 2 0H k H    Eq. A-23 

For an optical fiber, it is convenient to work in cylindrical coordinates and the Laplacian definition in Eq. A-19 may 

be used. In addition, since the structure of an optical fiber is uniform in the z-direction the derivative of the 

electromagnetic field with respect to z is constant. This is illustrated by  

      jk r
E r E r e


  Eq. A-24 

      jk r
z

d
E r jk E r e

dz


   Eq. A-25 

      
2

2

2

jk r
z

d
E r k E r e

dz


   Eq. A-26 

where zk  is the component of the propagation constant in the z-axis. Using this and the definition for the tangential 

Laplacian Eq. A-22 and Eq. A-23 reduce to   
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  2 2 2 0zE k k E     Eq. A-27 

  2 2 2 0zH k k H     Eq. A-28 

Given that the propagation constant in the medium is related to the propagation constant in free space ok via the 

refractive index n  of the medium (i.e. ok k n ) and that the propagation constant in the z direction zk  is related to 

propagation constant in free space  by the effective refractive index effn  within the waveguide (i.e. z o effk k n ) we 

may express Eq. A-27 and Eq. A-28 as  

  2 2 2 2 0o effE k n n E     Eq. A-29 

  2 2 2 2 0o effH k n n H     Eq. A-30 

The solutions to Eq. A-29 and Eq. A-30 may be obtained via the method of separation of variables. This is done by 

assuming the tangential electric and magnetic fields may be described by   

      ,E r R r     Eq. A-31 

      ,H r R r     Eq. A-32 

where the tangential component is either the x or y component of the field. Substitution of Eq. A-24 into Eq. A-22 

(or substitution of Eq. A-25 into Eq. A-23) followed by division by    R r  gives 
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    
     

    

 
Eq. A-33 

[73] 

Since the left side of Eq. A-33 is only a function of the variable r  and the right hand side is only a function of   

both sides must be equal to a constant such that we now have Eq. A-34 and Eq. A-35.  
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Eq. A-34 

[73] 
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Eq. A-35 

[73] 

which may be simplified to   
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Eq. A-36 

[73] 
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 
2
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2
0l






 
  


 

Eq. A-37 

[73] 

The solution to Eq. A-37 is simply a sinusoid of frequency l  given by  
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    sin l      Eq. A-38 

[73] 

where l is an integer and   is an arbitrary phase constant. Eq. A-36 may be put into standard form by transforming 

the variables as  

   2 22 2
o effu k n r n   

Eq. A-39 

[73] 

 ur   
Eq. A-40 

[73] 

 u
r r



 

   
 

   
 

Eq. A-41 

[73] 
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u u

rr



 

   
 

  
 Eq. A-42 

[73] 

where the index of the material is a function of r (the distance from the origin at the centre of the core). In standard 

form Eq. A-36 becomes  
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R r R r l
k R r
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  
       

 
Eq. A-43 

[73] 

The solutions are Bessel functions written as  

  
l

l

ur
AJ

for r aa
R r

for r awr
CK

a

  
    

 
 

   

 
Eq. A-44 

[73] 

where  /lJ ur a  is the thl  order Bessel function of the first kind, and   /lK wr a  is the thl  order modified Bessel 

function of the first and second kind. The parameters 2u  and 2w  are defined as.  

       2 2 22 2
1o effu k a n n     

Eq. A-45 

[73] 

       2 2 22 2
2o effw k a n n     

Eq. A-46 

[73] 

where 1n  is the refractive index of the core and 2n is the refractive index of the cladding. The relationship between 

u  and w  is given by 

      
2 2 2

u w V     
Eq. A-47 

[73] 

where the  V  gives the confinement in the core and is defined by   
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       
1

22 2

1 2

2
V a n n


  


   

Eq. A-48 

[73] 

At the boundary between the core and the cladding the two definitions for  R a  must be equal and continuous so 

that there is no discontinuity at the boundary as  

    0 0R a R a    Eq. A-49 

[73] 

 
   

0 0a a

dR r dR r

dr dr
 

  Eq. A-50 

[73] 

This produces a system of equations given by 
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uJ u wK w

  
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Eq. A-51 

[73] 

where the prime denotes the derivative with respect to r . If there is a solution to the system of equations then the 

determinant must be zero so that  
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J u K w
wJ u K w uJ u K w

uJ u wK w


   


 

Eq. A-52 

[73] 

This results in the characteristic equation  

 
 

 

 

 

' '
l l

l l

uJ u wK w

J u K w
  

Eq. A-53 

[73] 

Using the properties of the Bessel functions, explicit forms for ,l mLP  modes are given by  

 

 

 

 

 

 

 

 

 

0 0

1 1

1 1

0 1

1 1
l l

l l

J u K w
for l and m

uJ u wK w

J u K w
for l and m

uJ u wK w 

  

   

 
Eq. A-54 

[73] 

One may obtain  effn   for each mode in an optical fiber by solving Eq. A-54 by looking for the intersection of the 

curves generated by the functions on both sides of the equation. Given Eq. A-47 and knowledge of  V   from Eq. 

A-48 the equality is only a function of  effn  . As a result  effn    may be obtained from the solution to Eq. 

A-54. In many applications the fiber is designed to support only one mode, however, the use of fibers with few 

modes is becoming important for increasing data throughput in an optical network as discussed in Chapter 1. Matlab 

code using the developments in this section to solve  effn   for SMF28 fiber is presented in Appendix F. The 

dispersion within an optical fiber is determined by both the material dispersion and the waveguide dispersion (due to 

geometry of the fiber). As a result, if the material dispersion is known then knowledge of the dispersion in an optical 
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channel requires either accurate measurement of the dimensions of the waveguide (since fabrication not perfect) or 

direct empirical measurement of the total dispersion (material and waveguide effects) using a characterization 

technique. In the next sections we will look at the meaning of the effective index and its relationship to the 

chromatic dispersion in a fiber.  
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Appendix B: Alternative dispersion extraction techniques  

This section describes alternative techniques for extracting second order dispersion from a balanced spectral 

interferogram such as that produced using balanced spectral interferometry or virtual reference interferometry.  

B.1.1. Extraction of second order dispersion from the group delay curve 

It is possible to measure the second order dispersion by differentiating the fit to the first order dispersion (group 

delay) via (2-12). This method is only practical if the noise in the group delay curve is very low as the noise (scatter) 

in the group delay plot greatly affects the slope of the fit, which makes the results dependent on the type of fit 

chosen. This technique is useful when it is necessary to generate dispersion curves with low scatter (analytical 

differentiation of fit has no scatter). As the accuracy of this technique depends on the noise in the group delay plot 

(fit to scattered points produces second order dispersion curves with large error, as demonstrated in Chapter 2) these 

measurements may be checked using direct second order dispersion measurements.  

B.1.2. Extraction of the second order dispersion via a polynomial fit   

In this section a method for extracting the second order dispersion from a balanced spectral interferogram is 

presented. This method was developed to achieve high immunity to noise in the interference pattern by using all (or 

most) of the peaks and valleys in the interference pattern to compute the second order dispersion. This method 

operates under the assumption that third and higher order dispersion is negligible which is true for most optical 

fibers. Starting with Eq. 2-32 and simplifying the equation by cutting off all of the terms above 
0

2 2

feffd n d


  

gives  

 
   

   

0

2

2

2 2

0 0
4

2! 2!

feff

f

m n
m n

m n

d n
L

d

m n



   


   


 





    
   
    

 

 Eq. B-1  

 

The error associated with this approximation is given by  
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 Eq. B-2  

A plot is then produced by applying Eq. B-1 to the phase difference between 1  and all the peaks and valleys on the 

right side of 0  as well as to the phase difference between 1  and all the peaks and valleys on the left side of 0  

such that   
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 Eq. B-3  
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 Eq. B-4  

Where m is chosen from the peaks or valleys to the right of 1 from the set  2 3, ,...,   with  2,3,...,m    and  

p is chosen from the peaks or valleys to the left of 1 from the set  2 3, ,...,     where  2, 3,...,p     . 

The points from the right side of 0  are plotted in the upper right quadrant of the plot using Eq. B-3 and the points 

from the left side of 0  are plotted in the lower left quadrant using Eq. B-4, as illustrated in Fig. B-1.  

 

Fig. B-1. Plot generated using all the peaks and valleys in the interferogram 

 A polynomial fit (may be second or third order) to the plot in Fig. B-1, followed by analytical differentiation, gives 

0

2 2

feff fd n d L


  which may be converted to dispersion × length values using Eq. 1-7.  Note that a requirement for 

an absolute minimum or maximum number of points in the plot may be imposed to further improve noise immunity. 

Additionally, noise immunity may also be improved by imposing a tolerance to the change in the period between 

peak and valley points in order to limit the number of points allowed in the plot.  
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B.1.3. Extraction of the second order dispersion: multiple measurements  

In this approach, the average dispersion length is calculated using multiple phase difference measurements in the 

interferogram. Solving for 
0

2 2

feff fd n d L


  in Eq. B-1 gives 
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Eq. B-5  

The dispersion parameter is then calculated using all (or as many as desired) peaks and valleys from each side of the 

interferogram. An expression for this process is given as 
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   Eq. B-6  

The combined average from both sides of the balance point 0  is the average over the entire interference pattern. 

The advantage of this technique is that it has high immunity to noise in the interference pattern due to the averaging 

of the phase over all peaks and valleys. In the next section, the accuracy of this approach will be improved by 

including the effect of the third order dispersion by combining this approach and the matrix approach discussed 

earlier.  

B.1.4. Combined matrix & multiple measurements   

This section describes a slightly more complex method for extraction of the second order dispersion that is immune 

to noise and includes the contribution of third order dispersion. In this section the method discussed in the previous 

section is expanded to include the third order dispersion by combining it with the Matrix approach discussed earlier. 

Here, two phase difference equations are produced from Eq. 2-32, given as  
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Eq. B-7  

which, if the terms above 
0

2 2

feff fd n d L


  are cut off, may be expressed in Matrix form as  
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 Eq. B-8  

The solution to the system is given by   
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 Eq. B-9  

Since we are typically only interested in calculating the second order dispersion (the dispersion parameter × length) 

we are interested in the 
0

2 2

feffd n d


 term which is given by  
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 Eq. B-10  

The second order dispersion × length can then be found by combining Eq. B-10 and Eq. 1-7 which results in  

  
 
1, ,0

0

, 1, , 1,

1

2

m n m n
f

m n m n m n m n

s m n q m n
D L

c p s q r






 

   
 


 Eq. B-11  

Summation over multiple peaks and valleys in the inference pattern is described by 
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Appendix C: Comparison of resolution/scatter in USI vs. BSI (VRI) 

This section formally compares the first order dispersion (group delay) resolution (and scatter) in USI to that in BSI 

(or VRI). This comparison is appropriate since both techniques are capable of measuring first order dispersion 

(group delay) directly from the interference pattern. This section demonstrates that since the resolution in USI is 

dependent on the window size used in the Fourier transform, the resolution in USI only approaches that in BSI if the 

optimum window size is chosen. However, since the optimum window size cannot be known apriori, BSI techniques 

generally provide higher resolution than USI based techniques. This is the reason why experimentalists go to the 

trouble of setting up and balancing a reference path so that BSI can be used. It should also be noted here that the 

comparisons in this section between USI and BSI will also apply to USI and virtual reference interferometry (VRI) 

since the virtual reference takes the place of the physical reference in BSI making the two techniques equivalent.   

C.1. Resolution and scatter in USI 

This section provides a formal mathematical treatment of this problem. The application of a Fourier transform to a 

windowed section of the interference pattern may be described mathematically as a multiplication between the 

cosine function and the rectangular function, where the rectangular function is defined by  

       

 

 

 

1
0 2

1 1
0 02 2

1
0 2

0

( )

1

avg

avg avg

avg

a
if

rect a if a

if
a

 

   

 

 



   



 

 Eq. C-1 

and the width of the window is given as 1 a , as illustrated in Fig. C-1(a). The signal input to the Fast Fourier 

Transform (FFT) algorithm is also illustrated in Fig. C-1(b).   

 
Fig. C-1. Windowing a section of the interference pattern is equivalent to multiplication of the cosine with the 

rectangular function.  
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The small window approximation 

If the size of the window chosen is small enough, the frequency of the interference fringes within the window can be 

considered approximately periodic (in reality it is continuously variable as a function of wavelength). The effect of 

the aperiodic nature of the interference pattern (aperiodicity is due to dispersion) will be included in the next part of 

the derivation. The function input to the Fourier transform may therefore be described by 

          0 0cos 2window avg

b

h rect a     
 
  
 
 

 Eq. C-2 

where 0  is the average frequency of the interference within the window (given by Eq. 2-21) and 0avg is the 

wavelength at the centre of the window. The Fourier transform of the rectangular function is  

       
1

rect sinc
FT

a
a a




 
  

 
 

Eq. C-3 

 [47] 

The rectangular function in Eq. C-2, however, is shifted in the wavelength domain; therefore, the shifting property 

of the Fourier transform must be applied. This property is given by 

         0
0

phase shift

FT j
x e X

  
   Eq. C-4 

 [47] 

Applying this property to Eq. C-3 gives  

         0
0

1
rect sinc

FT j a
a e

a a

  
    
   

 
 Eq. C-5 

The Fourier transform of the cosine function is defined as  

       
1

cos
2 2 2

FT b b
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    
 

Eq. C-6  

[47] 

Applying the Fourier transform rule 

            FT
f g F G     

Eq. C-7  

[47] 

to Eq. C-2 gives 

            0
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H e
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  
      

      
 

 Eq. C-8 

where c  is the speed of light in vacuum. Since only one side of the frequency spectrum (Fig. 2-10(b)) is required 

this expression may be simplified to 
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    

    
 

 Eq. C-9 

 Using the sifting property of the delta   function given by 

      

       

        

 

since

f f x x dx

f x x dx x x

f

    

 

 









    

      

 



  

Eq. C-10  

[47] 

Eq. C-9 simplifies to 

        0 001
sinc

2

j a
H e

a a

  
  
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 Eq. C-11 

Since only the magnitude of the Fourier transform is considered here, the phase component may be neglected and 

the function further simplifies to 

        01
sinc

2
H

a a

 


 
  

 
 Eq. C-12 

The Fourier transform applied to a small windowed section of the interference is illustrated in Fig. C-2. 

 

Fig. C-2.  Visualization of Fourier transform on a windowed section of the interference pattern for small 

window size. 

The result in Eq. C-12 assumed a small window size so that the aperiodicity of the interference pattern could be 

neglected. However, Eq. C-12, shows that choosing a window size (given by 1 a  in Fig. C-1 and Fig. C-2) can be 

detrimental since a small window size means that a  must be large in which produces a wider peak in the  sinc  

function. An illustration of this effect is provided in Fig. C-3, which shows that when the window size is reduced (by 
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increasing the magnitude of a ) the peak of the  sinc  function is broadened in the spatial frequency (Fourier) 

domain.   

 

Fig. C-3.  An illustration showing how a reduction in the window size (i.e. increasing the magnitude of a ) 

results in a broadening of the peak of the  sinc  function in the spatial frequency domain.   

This inverse relationship between the bandwidth of a signal and its Fourier transform is a fundamental property of 

the Fourier transform. As a result, choosing a window size that is too small broadens the width of the spatial 

frequency spectrum of  H  . The broadening of the spatial frequency spectrum increases the width of the sinc()  

function, resulting in increased uncertainty in the location of the peak at .avg window . This increase in peak width 

also ultimately lowers resolution by increasing the spacing required to resolve multiple peaks. In order to resolve 

two closely spaced peaks they must be no closer than the full width at half the maxima (FWHM) of each  sinc  

function, as illustrated in Fig. C-4.  

 

Fig. C-4.  Minimum separation between peaks of each  sinc  function 

Since the  sinc  function has no inverse the location where this occurs can be solved graphically by plotting  
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       
sin( )

sinc
x

x
x




  Eq. C-13 

and solving for x  at the FWHM point graphically (using Matlab) as shown in Fig. C-5. 

 

Fig. C-5.  The  sinc  function reaches half its maximum value when 0.6x   

The  sinc  function reaches half of its maximum when 0.6x  . Therefore the  sinc function in Eq. C-13 is 

equal to half its maximum when  

      0 0.6a    Eq. C-14 

Since this is only half the width of the peak it must be multiplied by a factor of 2 to be equal to the full width at half 

maximum (FWHM).  

      
Small 0
Window
Limit
(FWHM)

2 1.2a       

Eq. C-15 

This part of the derivation considers small window sizes for which the frequency variation in the window can be 

ignored. It shows that choosing a window that is too small is detrimental since the width of the  sinc  function 

increases as the window size is reduced. The next part of the derivation will consider the choice of a larger window 

where the frequency variation in the interference pattern cannot be ignored and becomes significant. It will show 

that the variation in frequency adds new frequency content and broadens the peak of the  sinc  function, resulting 

in higher uncertainty and lower resolution.    

Large window (including the effect of frequency variation) 

If a large window with multiple frequency components is chosen then the aperiodic nature of the interference pattern 

(due to dispersion) must be considered. For large window sizes this effect dominates in broadening the peak of the 
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 sinc  function and ultimately erodes resolution. The analysis begins by considering a large window as the 

summation of multiple small windows (small enough that the frequency of the interference is approximately 

periodic within the small windows, as discussed in the previous section), each producing a  sinc  function of its 

own that is slightly shifted in frequency as illustrated in Fig. C-6.  

 

Fig. C-6. Multiple small windows used to take into account the aperiodicity in the interference pattern due to 

dispersion (in a large window) and the resulting Fourier transforms for each of the small windows.  
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The effective summation of all the  sinc  functions within the small window can be seen as convolution of the 

 sinc  functions with the rectangular function. 
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 
 

 Eq. C-16 

The solution of this equation is not important, however, it is important to notice that its spectral width is at least 1 A  

(from the  rect  function). The spectral width in the large window limit is therefore given by  

         
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Substitution of Eq. 2-21 into Eq. C-17 gives 
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 Eq. C-18 

Assuming 
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   Eq. C-18 may be simplified to  
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Eq. C-19 

Furthermore, rearranging Eq. 1-7 to 
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 Eq. C-20 

followed by substitution into Eq. C-19 gives  
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Eq. C-21 

and since (see Fig. C-6) 

       
. .10 0

1
avg N avg A

    Eq. C-22 

The equation further simplifies to  
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Eq. C-23 

 

The total resolution  

The spectral width of a  sinc  function produced by taking the Fourier transform of a windowed section of the 

interference pattern depends on the window size (Eq. C-15) and on the aperiodicity due to dispersion of the 

interference pattern within the window (Eq. C-23). The function that describes these two effects (given by Eq. C-16) 

is a convolution of these two phenomena. Therefore, the resulting width of the spatial frequency peak in Eq. C-16 

can be determined by using the width property of convolution [74] given by 
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 Eq. C-24 

Recognizing that both a  and A  in Eq. C-24 both refer to the window size (the former to the small window limit and 

the latter to a large window). We replace these two terms with 1 window  in Eq. C-24 so the equation becomes 
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 Eq. C-25 

The first term dominates as the window size gets smaller (due to inverse nature of the bandwidth of a signal and its 

Fourier transform) and the second term dominates as the window size increases (due to increase in the frequency 

content within the window). The effect this has on both the resolution and scatter in the group delay plot is now 

examined. To determine how the minimum separation in the spatial frequency (Fourier) domain relates to the 

minimum group delay separation that can be measured, consider the interference pattern produced by a fiber with 

two modes 
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Eq. C-26 

where  1  is the phase of the first mode and  2  is the phase of the second (adjacent) mode. The low frequency 

beat between modes is given by  
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 Eq. C-27 

Assuming that the size of the window chosen is large enough to include several periods of the beat, a windowed 

Fourier transform may be used to extract the frequency of the beat where  
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 Eq. C-28 

Following a similar procedure as in Eq. 2-14 to Eq. 2-22, the beat frequency can be described by 

      
.

2
0avg Window

g

Beat c






   Eq. C-29 

Each of the elements in the cascade or modes in the fiber results in a separate group delay curve. Assuming that the 

group delay curves have equal slope (for simplicity), then each group delay curve produces a  sinc  function in 

the spatial frequency domain, as illustrated in Fig. C-7.  
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Fig. C-7.  Relationship between beat frequency and group delay separation 

In order to be able to resolve the peaks of the two  sinc  functions (i.e. resolve the modes)  

      Beat Total     Eq. C-30 

Substitution of Eq. C-25 and Eq. C-29 into Eq. C-30 gives 
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 Eq. C-31 

This equation gives the minimum group delay separation that can be resolved using a windowed Fourier transform 
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 Eq. C-32 

The resolution is also related to the scatter in the group delay curve produced using this technique. This is illustrated 

in Fig. C-8 which shows that the peaks of two modes are the closest they can get to each other when  
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 Beat Total     Eq. C-33 

This can be related to a measure of the scatter in the group delay plot, as illustrated in Fig. C-8.  

 
Fig. C-8. Equivalence of (a) spectral resolution (b) scatter in the group delay curve 

where substitution of Eq. C-29 into Eq. C-33 gives 

 
.

2
0avg Window

g

Total c






   Eq. C-34 

which means that the scatter in the group delay plot, in the worst case scenario, is also given by Eq. C-32. This result 

indicates that the scatter in the group delay plot for USI also depends on the window size, which cannot be known 

apriori. This scatter is important since the measurement of second order dispersion requires curve fitting (cannot be 

measured directly) followed by analytical differentiation and the scatter affects the fit. This is the key problem with 

all USI based techniques.   



Appendix C:  Comparison of resolution/scatter in USI vs. BSI (VRI) www.inometrix.com 137 

 

 

C.2. Resolution and scatter in BSI 

The resolution of a measurement technique is related to the ability to distinguish between features that have a small 

spatial separation. In balanced spectral interferometry, spatial resolution is related to the minimum spectral 

separation between multiple balance points. Multiple balance points can be produced by two closely spaced 

reflection points or even two closely spaced modes in a fiber to produce an interference pattern described by Eq. 

C-26. The resulting interference pattern has two balance points, with a minimum spectral separation that is equal to 

the sum of half the minimum bandwidth of each balance point, as shown in Fig. C-9.  

 
Fig. C-9. Relationship between minimum spectral separation and minimum bandwidth 

where 
10̂  and 

20̂ are two balance points observed within a spectral scan. In order to resolve the balance points, 

they can be no closer to each other than  
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This equation, therefore, gives the maximum spectral resolution for BSI based measurements. This equation may be 

converted to spatial resolution (i.e. minimum group delay separation) between balance points by assuming that the 

two modes have a similar dispersion    
1 21 0 2 0

ˆ ˆD D  so that Eq. C-35 simplifies to  
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where  
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 Eq. C-37 

The minimum resolution is illustrated in Fig. C-10(a). It is also important to note that this equation is also related to 

the scatter in the group delay points in the worst case scenario where  
1,20 minB   as illustrated in Fig. C-10(b).  

 

Fig. C-10.  Equivalence of (a) spectral resolution and (b) scatter in the group delay curve 
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C.3. Comparison of the resolution and scatter in USI to BSI (VRI) 

In this section, the performance of the USI technique that uses a windowed Fourier transform (USI-WFT) to directly 

measure the group delay is compared to balanced spectral interferometry for the ability to measure group delay. This 

comparison is appropriate since both of these techniques are capable of measuring group delay directly from the 

interference pattern. Although the USI-WFT technique is not capable of characterizing the second order dispersion 

directly from the interference pattern like BSI, one may only be interested in generating group delay curves. In this 

case, the USI-WFT technique may seem competitive with BSI. This section compares the resolution and scatter of 

the group delay plot in BSI to that in USI-WFT. It will demonstrate that the resolution and scatter in the USI-WFT 

technique depends on the widow size. Since an optimum window size cannot be known apriori, the resolution of the 

USI-WFT technique is generally lower than BSI since the scatter cannot be minimized. Furthermore, this section 

compares the resolution in BSI to the hypothetical case when the optimum window size is chosen for the USI-WFT 

technique and shows that BSI is still slightly better in this case.  

The minimum group delay resolution for BSI was given in Eq. C-37. Solving for  
.0avg Window fD L  in this equation 

gives 
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 Eq. C-38 

The minimum group delay resolution for USI-WFT was given in Eq. C-32.  Solving for  
.0avg Window fD L  in this 

equation gives 
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 Eq. C-39 

Equating Eq. C-38 and Eq. C-39 gives 
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 Eq. C-40 

Solving this equation for 
min
Windowed
FT

g gives 
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Eq. C-42 

so that the optimum window size is given as 
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To ensure that and ensuring that 
min
Windowed
FT

g is minimized, check that the curvature is positive 
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Eq. C-44 

Since the curvature is positive the function is minimized and using the window size in Eq. C-43 gives the optimum 

window size. Substitution of the optimum widow size in Eq. C-43 into Eq. C-41 gives 

 
 

1min min min
2

2.4
1.265

3.6Windowed BSI BSI
FT

g g g        Eq. C-45 

This result indicates that USI-WFT approaches the resolution of BSI when the optimum window size is chosen. 

However, since it is impossible to know the optimum window size for a given interference pattern, the resolution 

(minimum group delay difference and scatter in the group delay plot) of the BSI technique is generally better than 

the resolution in the USI-WFT technique, which cannot be minimized. This illustrates that the BSI technique is not 

only superior to the USI technique for its ability to directly characterize second order dispersion but it is also 

superior in its ability to characterize first order dispersion (assuming a high precision stage is available, of course). It 

demonstrates why experimentalists go to all the trouble of setting up a reference path. It should be noted here that 

this advantage of BSI will also be present in VRI except that the need for the high precision stage will be removed. 

A complete discussion of VRI is introduced in Chapter 3.   



www.inometrix.com 

141 

 

Appendix D: Comparison of standard VRI and DVRI 

Chapters 3 to 5 demonstrated several applications of both VRI and DVRI; however, one may question the need for 

VRI given that DVRI allows for the generation of dispersion plots with expanded bandwidths or measurements that 

would otherwise be impossible. This appendix shows what situations VRI is the optimal technique and what 

situations DVRI is optimal. Intuitively, one may consider that since DVRI provides a benefit (bandwidth 

compression), there must be an associated cost. This is in fact the case since bandwidth compression increases the 

certainty of the balance point which has a spatial dimension (in nm units) therefore by the uncertainty principle there 

must be greater uncertainty in the group delay which has a temporal dimension (in ps units). To demonstrate this 

with mathematical rigor requires a comparative error analysis between VRI and DVRI. This appendix, therefore, 

presents an analysis of the errors in each technique to identify situations where each technique is optimum.  

D.1. Calibration error  

In this thesis virtual reference has been used in both single arm configurations and dual arm configurations. The 

analysis that follows in the next sections will assume the common path configuration. The use of a dual arm 

configuration requires calibration of the dispersion of the optical components in the reference arm (i.e. fibers, 

collimators, mirrors, etc.) which has an associated error. The equations which will be developed for the common 

path configuration (which is free from calibration error) will also apply if the dual arm configuration is used. The 

only difference is that the calibration error must be included with the error in the measurement using a common path 

configuration (which does not have calibration error). When a measurement is determined by n  independent 

components with individual uncertainties, the total absolute uncertainty F in the result where  1 2, ,..., nF F x x x  

is given by [75] [76]   

   
2 2

1

N

i i

i

F dF dx x



     Eq. D-1 

Therefore since the calibration error is independent of the other sources of measurement error, the total absolute 

error in the dual arm configuration may be obtained by adding the calibration error to the measurement error using a 

common path configuration in quadrature as   

2

2
dual common calibration
arm path

 
      

 
 Eq. D-2 

One of the advantages of the virtual reference technique in general is the ability to utilize the common path 

configuration (VRI and DVRI presented in Chapters 3 to 5) when a tunable laser with sufficient resolution is 

available. The ability to operate using this configuration is a key advantage compared to using a physical reference 

path (as in balanced spectral interferometry). This is because a physical reference requires that the dispersion of the 

optical components used in the path (i.e. fibers, collimators, lenses etc) must be calibrated, which introduces 

calibration error into the resulting measurements. In the VRI and DVRI setups that employ a common path 
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interferometer, the reference path is entirely virtual, therefore its dispersion and length are known with absolute 

certainty. This eliminates the need for calibration and makes virtual reference interferometers using this 

configuration more accurate than balanced spectral interferometers. Furthermore, the use of an air path in dual arm 

interferometer configurations results in additional noise in the interference due to environmental changes in the 

temperature and pressure in the air path. Air flow in the air path can also cause further noise, especially if the air 

flow occurs during the scan when the interference pattern is being obtained. In order to mitigate these errors in a 

dual arm interferometer with a free space reference path, the free space path must be isolated from the environment. 

If the effects of variations in temperature and pressure are to be mitigated, the free space reference path must be 

vacuum sealed. Otherwise the environment (i.e. altitude (pressure) and climate (humidity) will produce variable 

results for the same test fiber. A VRI or DVRI based system employing a common path configuration is immune to 

these effects. This advantage can be important for quality control applications in a manufacturing process where test 

facilities can be located anywhere around the world.  

D.2. Interference phase noise 

Neither common path nor dual arm interferometers, however, are immune to environmental factors, such as those 

that cause thermal fluctuations in fiber length during the scan. These environmental sources of error can be 

mitigated (though not completely eliminated) by isolating the test fiber from the environment (i.e. enclosing it in an 

air tight container). Other sources of error common to both configurations are those that reduce the fidelity of the 

raw interference pattern (errors in the measured intensity or wavelength points) leading to phase errors in the 

amplitude modulation. One example of this is noise in the intensity of the interference pattern due to a low signal-to-

noise ratio. Another example is error in the wavelength location due to limited resolution or nonlinearity in the 

wavelength sweep. Another source of error is variation in the sampling frequency of the (detector) intensity and 

wavelength (wavemeter) measurements leading to a loss of synchronization between the two measurements. This 

effect can be mitigated by synchronization of the clocks via triggering mechanisms.   

Interference phase noise may be caused by a number of factors, as discussed above. The main effect of noise, 

however, is that it leads to variations in the phase of the raw interference pattern, which translates into a variation of 

the phase of the amplitude modulation. The next section will show the effect of this variation on a virtual reference 

measurement.      

D.3. Effects of interference phase noise on peak/valley location 

In all virtual reference interferometry (i.e. both VRI and DVRI), a real interference pattern is produced in the first 

step (see Chapter 3.2). All of the phase error in a virtual reference measurement comes from this step. A real 

interference pattern containing some phase error may be described by  
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      2 4
1 2 2cos 2Real in f fI U l R L      Eq. D-3 

where     is the phase error as a function of wavelength due to the interference phase noise. In the second step 

of a virtual reference measurement, the length of the virtual reference vL that balances the group delay of the test 

fiber is estimated from the phase (period) of  RealI  , which is more difficult as the interference phase noise 

increases. In the third step, a spectral interference pattern is generated by simulating a virtual reference with a length 

that balances the test path at a wavelength within the scan range. 

    2virtual v vI cos L   Eq. D-4 

where 0v k   for VRI or defined by the dispersion of the virtual reference in DVRI. When the spectral interference 

pattern of the virtual reference is multiplied point-by-point with that of the raw interference pattern, a second order 

interference pattern with an amplitude modulation is produced.  

 

     SO Real virtualI I I     

                                            

     
Amplitude modulation

    ( ) ( )f v vff v f vcos L L cos L L      

 
 

  
 

 

 

     

Eq. D-5 

In the fourth step, the amplitude modulation is extracted from the second order interference pattern by low pass 

filtering.  

                      amp.mod ( )f f v vI cos L L       Eq. D-6 

 The amplitude modulation, illustrated in Fig. D-1 is approximately symmetric across a balance point at 0 which is 

the wavelength location where the group delay of the reference path equals that of the test path. This wavelength 

location 0  therefore is one measured quantity in VRI which is subject to error (dependent variable). To locate 0 , 

a peak/valley pair on either side of 0  is required (i.e. 2 1 1 2, , ,     in Fig. D-1). These same peak/valley points are 

also used to measure the dispersion × length of the fiber. Therefore, the only measured quantities in a virtual 

reference measurement (or also a BSI measurement) are the locations of these four peaks/valleys. The error in 

locating these four peak/valley locations (i.e. 2 1 1 2, , ,         in Fig. D-1) is due to the phase error     

in the raw interference pattern  RealI   (due to the interference phase noise).  
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Fig. D-1. Amplitude modulation extracted from second order interference pattern via low pass filtering. The 

phase error in the raw interference pattern (due to interference phase noise) leads to errors in the peak 

locations  2 1 1 2, , ,      

D.4. Effect of error in peak/valley location on balance point  

The balance point 0  is determined using Eq. 2-24. Assuming that 2 1 1 2, , ,      are independent variables then 

the total absolute uncertainty (error) in 0  may be found using Eq. D-1 as 

  
4

20
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2, 1,1,2

n
nn
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 


 

 
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  Eq. D-7 

 A simplifying approximation can be made by assuming that 0 0n    so that  

  
2

0

2, 1,1,2

n

n

 
 

    Eq. D-8 

This means that the total absolute uncertainty in the balance point is equivalent the sum of the uncertainties in the 

peak/valley locations added in quadrature.   

D.5. Effect of peak/valley error on first order dispersion  

D.5.1. Standard VRI 

In standard VRI the group delay is known with absolute certainty since it is simulated. Therefore there is no error in 

the value of group delay as it is the independent variable. This is effectively because in VRI  
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   Eq. D-9 

The wavelength of the group delay, however, is measured by locating 0 which is subject to error. Therefore, in a 

group delay plot generated via standard VRI the scatter is only along the wavelength axis with a total absolute 

uncertainty of 0  given in Eq. D-7 (or Eq. D-8). 

D.5.2. Dispersive VRI 

In DVRI, however, it is not the exact value of the group delay that is known but the curve that defines the group 

delay. The exact value of the group delay is only determined after the balance point 0  is measured from the 

interferogram, since at the balance point    0 0test v
path

g g    . Therefore an error in measuring the balance point 

(i.e. 0 ) leads to an error in  0vg  , which is therefore also an error in the measurement of  0test
path

g  , (i.e. 

   0 0test v
path

g g      ). The uncertainty in the group delay is related to the uncertainty in the balance point 

according to 

  
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d
D L

d





  Eq. D-10 

so that 

     0test v
path

g g v vD L          
Eq. D-11 

Which basically shows that increasing the second order dispersion of the dispersive virtual reference increases the 

slope of the simulated group delay curve, therefore an error in the wavelength axis is magnified in the group delay 

axis by an amount proportional to the slope of the group delay (the second order dispersion), as illustrated in Fig. 

D-2. If, for example, a first order dispersive virtual reference is used (see Chapter 5.2.2.2) then  v vD L K c   and 

the error in the group delay measurement is related to the error in the balance point measurement as 

   0test
path

g v

K
L

c
      Eq. D-12 

If a second order dispersive reference is used instead (see Chapter 5.2.2.1), then the   02v vD L Q c    and the 

error in the group delay measurement is related to the error in the balance point as  

   0
0

2
test
path

g v

Q
L

c


      Eq. D-13 

However, to achieve the same compression we must have that 02K Q  so that the error is approximately the same 

for both types of dispersive references (it is only slightly worse for the second order dispersive reference for small 

0 ). The result is that using any dispersive reference results in an increased uncertainty in the group delay 
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measurement compared to standard (non-dispersive) VRI where the slope of the simulated group index curve is 

zero, so that there is no uncertainty in the group delay. 

 

Fig. D-2. Comparison of uncertainty in the group delay measurement for VRI (non-dispersive virtual 

reference), DVRI with a first order dispersive reference, and DVRI with a second order dispersive reference. 

The illustration shows that VRI has no uncertainty in the group delay (slope is zero); however for DVRI the 

uncertainty depends on the slope of the simulated group delay curve (i.e. the simulated second order 

dispersion).   

 It should, however, be noted that a large  v vD L  results in compression of the interference pattern which means 

that the peaks 2 1 1 2, , ,     in Fig. D-1 are narrower. This means that the error in locating the peaks 

2 1 1 2, , ,         in Fig. D-1 is smaller. This results in a smaller 0 , which mitigates the effect of the 

uncertainty introduced by the dispersive virtual reference. However, this effect does not negate the increased 

uncertainty of using a dispersive virtual reference. To show this, note that higher compression results in narrower 

peaks as well as a smaller minimum bandwidth. Therefore the width of the peaks is proportional to the minimum 

bandwidth. Which ultimately means that  0 min 0B    and      
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 Eq. D-14 

where substitution of Eq. 5-12 into Eq. 5-17 and substitution of the result into Eq. D-14 gives 
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Typically    0 0v v f fD L D L   so that      0 0 0v v f f v vD L D L D L     and  
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  Eq. D-16 

Using this approximation, Eq. D-15 becomes 
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this shows that the increase in certainty in the balance point due to compression does not negate the increase in 

uncertainty in the group delay. An interesting insight into the dispersive reference can be obtained by re-substitution 

of Eq. D-16 back into Eq. D-17 to give 

       2
0 min 0 0 00

6
test test
path path

g gB
c

      
 
 
 

      Eq. D-18 

This result indicates that as the wavelength location (spatial) becomes known with greater certainty (due to 

compression), the group delay (temporal) is known with less certainty. This is effectively a statement of the 

uncertainty principle.  

D.6. Effects of wavelength error on second order dispersion 

In both VRI and DVRI the second order dispersion parameter is obtained by solving a system of equations in which 

the constants are determined using the peak locations of 2 1 1 2, , ,      in Fig. D-1. The process for solving this 

system of equations is the same for both VRI and DVRI and is discussed in Chapter 2.4.2.  

The system of equations in both VRI and DVRI used to solve for the second order dispersion can be produced using 

Eq. 2-35 in Chapter 2 or Eq. 5-11 in Chapter 5. 
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  Eq. D-19 

where for standard VRI in a common path configuration  

   0 0
0

f f

c
D L 


   Eq. D-20 

and for DVRI in a common path configuration  

       0 0 0
0

v v f f

c
D L D L  


    Eq. D-21 

(Please note that 0  refers to the absolute error in the location of the balance point whereas  0  refers to the 

second order dispersion length difference between the test and reference paths, the symbols may be confusing but 

have been chosen this way to follow convention and for consistency with the notation used in this thesis). The 

system of equations is used to solve for  0  by locating the peaks/valleys (i.e. 2 1 1 2, , ,      in Fig. D-1) to 

calculate the constants , , ,p q r s  in Eq. D-19. Following the steps in Chapter 2.4.2 that led to Eq. 2-38,  0  is 

given as  

 
 

0
2

s q

ps qr



 


  Eq. D-22 

Assuming that these constants are independent variables, the total absolute error in  0  can be determined using 

Eq. D-1. The elements of the sum are as follows 
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 Eq. D-24 
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 Eq. D-25 

   

 

0

2
2

d s p r

d ps qr

  



 Eq. D-26 

Therefore the total absolute error in  0  can be found using Eq. D-1 as 
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s q s p q r

ps qr p r s q q s
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    


      

 Eq. D-27 

Note that Eq. D-27 gives the exact expression for the error but it can be simplified further if desired by assuming 

that the interference pattern is approximately symmetric (this essentially assumes low third order dispersion, which 

is approximately true for most fiber). Under this assumption p r  and s q  so that    
2 2

s q p r   and 

2 2q s  so that Eq. D-27 can be simplified to the approximate expression 

 
 

 
       

2 2 2 2

0 2
2

s p r
p q r s

ps qr



         


 Eq. D-28 

The total absolute error in  0  (in either the exact expression in Eq. D-27 or the approximate expression in Eq. 

D-28) is a function of the error in the constants (i.e. , , ,p q r s    ) , which are themselves determined by the error 

in locating the peaks/valleys (i.e. 2 1 1 2, , ,         in Fig. D-1). Therefore the errors in the constant 

, , ,p q r s     must also be determined. The errors in p  and r  can be determined using Eq. D-1 as   
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 Eq. D-29 
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 Eq. D-30 

Note that 0  is an independent variable for p  since it also depends on 1 and 2  in Eq. 2-24 and it is an 

independent variable for r  since it also depends on 1 and 2  in Eq. 2-24. The errors in q  and s  can be determined 

using Eq. D-1 as   
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 Eq. D-31 
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 Eq. D-32 

Note that 0  is an independent variable for q  since it also depends on 1 and 2  in Eq. 2-24 and it is an 

independent variable for s  since it also depends on 1 and 2  in Eq. 2-24. Therefore the total absolute error in 

 0  can be found by substitution of Eq. D-29, Eq. D-30, Eq. D-31 and Eq. D-32 into Eq. D-27 (or Eq. D-28).  

D.6.1. Standard VRI 

 0  was defined in Eq. D-20 for standard VRI in the common path configuration. Rearranging the terms in Eq. 

D-20 gives 

   0
0 0f fD L

c


    Eq. D-33 

where  0f fD L  is a function of both  0  and 0 . Therefore the total absolute error in  0f fD L  may be 

found using Eq. D-1 as 
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     Eq. D-34 

Where the first term is due to the error in measuring the balance point and the second term is due to the error in 

 0  which is determined by Eq. D-27 (or Eq. D-28)  

D.6.2. Dispersive VRI 

 0  was defined in Eq. D-21 for DVRI in the common path configuration. Rearranging the terms in Eq. D-21 

gives 

     0
0 0 0fv v fD L D L

c


     Eq. D-35 

where  0f fD L  is a function of both  0  and 0 . Therefore the total absolute error in  0f fD L  may be 

found using Eq. D-1 as 
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 Eq. D-36 

Where  0v vD L  is known from the simulation so there is no uncertainty in its value so that Eq. D-36 becomes 
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           

  



  Eq. D-37 

Where the first term is due to the error in measuring the balance point and the second term is due to the error in 

 0  which is determined by Eq. D-27 (or Eq. D-28). The key difference between Eq. D-34 and Eq. D-37 is the 

first term. The slope of the second order dispersion curve of the virtual reference leads to uncertainty in the second 

order dispersion measurement due to uncertainty in the balance point. This is a similar effect observed in the group 

delay measurement. Note that we are assuming that the second order dispersion of the dispersive reference has an 

opposite sign to that of the fiber under test to achieve compression (as discussed in Chapter 5).  

A special case occurs if a first order dispersive reference is used where  0v vD L K c   (see Chapter 5.2.2.2) since 

this means that  0 0 0v vd D L d    and  
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Which is the same total absolute error as for VRI in Eq. D-34 (if we assume that the  0  term is similar for 

both VRI and DVRI and is small compared to the first term). This result might have been anticipated since a first 

order dispersive reference has a second order dispersion that is constant. Therefore the error in locating the balance 

point would have no effect on the simulated second order dispersion. This is a special case, however, since clearly if 

a second order dispersive reference is used (see Chapter 5.2.2.1) then   00 2v vD L Q c    which is a function of 

0  and the error in the location of the balance point is magnified by the slope of the second order dispersion curve 

in the first term in Eq. D-37.  

 

Fig. D-3. Comparison of uncertainty in the second order dispersion measurement using VRI (non-dispersive 

virtual reference), DVRI with a first-order dispersive reference, and DVRI with a second order dispersive 

reference. The illustration shows that both VRI and DVRI with a first order dispersive reference have no 

additional uncertainty in the second order dispersion plot, however for DVRI with a second order dispersive 

reference the uncertainty depends on the slope of the simulated second order dispersion curve (i.e. the 

simulated dispersion slope (or third order dispersion))  
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D.7. Conclusion 

This appendix compared the uncertainty in the first and second order dispersion measurements made using VRI and 

DVRI (with both a first and second order dispersive reference). It showed that in DVRI the uncertainty in measuring 

the balance point wavelength is magnified by the slope of the dispersive virtual reference, thereby increasing the 

uncertainty in the group delay measurement compared to standard non-dispersive VRI. It also showed that if DVRI 

with a first order dispersive reference is used, then there is no additional uncertainty in the second order dispersion 

measurement compared to VRI. However, higher order dispersive references would increase the uncertainty. This 

shows that a first-order dispersive reference is the best choice when using DVRI. This appendix showed that, 

although DVRI is useful for enabling measurements that would otherwise be impossible (by compressing the 

interference so that the minimum bandwidth is less than that of the source), the cost of doing so is an increased 

uncertainty in the group delay measurement, which is an effect of the uncertainty principle. Therefore, if using 

DVRI is not necessary, the group delay can be measured with greater certainty by using VRI. If however, the 

objective of a particular experiment is to characterize the second order dispersion and the group delay is of no 

interest, then either VRI or DVRI (with a first order dispersive reference) will provide equivalent certainty.       
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Appendix E: Why BSI/VRI cannot be used to extract the phase or 
the effective index 

In Chapter 2.4.1 unbalanced spectral interferometry using the phase spectrum of a Fourier transform of the 

interference pattern was shown to be capable of extracting the phase from the interference pattern. This enables the 

extraction of the effective index of the fiber. Balanced spectral interferometry, however, removes the linear portion 

of the phase term (balanced by the reference arm), making it difficult to extract the phase directly. This section 

describes why balanced spectral interferometry (or virtual reference interferometry) cannot be used to extract the 

effective refractive index (it directly measures the group index or group delay). The phase of the interference pattern 

in balanced spectral interferometry is the same as the phase of the amplitude modulation of the second order 

interference pattern in virtual reference interferometry. This phase was given in Eq. 2-30 as 

  

  

   

0

0 0

2 32 3

0 0

2 3

0

0

...
2! 3!

4

f

f f

eff

f

eff eff

f f

g f air

dn
L

d

d n d n
L L

d d

N L L



 



 

   

  










 
  

 
 

 
 
 
 
 
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 Eq. E-1  

where air vL L  in a virtual reference interferometry experiment. From this equation the group index × length may 

be extracted using  

  0g f air vN L L L    Eq. E-2  

where either airL  or vL  must be known (note that it is easier to determine vL  than airL  which must be measured). 

This comes from the fact that the balance point is the location where the phase function is minimized (not zero - see 

what happens in Eq. E-1 when 0   ). As a result a plot of  0gN   may be produced if fL  is known. The 

effective index is related to the group index as  

  ( )
eff

g eff

dn
N n

d


  


   Eq. E-3  

One might consider the possibility of extracting a plot of  effn   from the plot of ( )gN   given that his is a first 

order differential equation for which  effn   may be solved for a given boundary condition. If this equation is 

written in standard form  

  
1 1

( )
eff

eff g

dn
n N

d


 
  

    Eq. E-4  

it may be solved by multiplying both sides by an integrating factor   1     
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and noticing that the left hand side can be simplified using the chain rule 
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so that the expression becomes  
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 Eq. E-7  

integrating both sides gives the solution 
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Eq. E-8  

Since the integral has no limits the result includes an arbitrary constant. For example, if the group index curve is fit 

using a second order polynomial  

   2
gN C B A      Eq. E-9  

where the parameters ,B,CA  are determined from the fit, Eq. E-9 may be solved as 

   2 lneffn C B A Q          Eq. E-10  

where Q  is an unknown constant that can only be determined by knowledge of the boundary conditions, which 

cannot be determined experimentally. An additional problem is that the group index curve for most fiber is 

approximately linear and the experimental plot will contain noise. The noise introduces errors into the fit, resulting 

in error in the effective index curve. Since the technique that measures phase directly using the phase of a Fourier 

transform (Chapter 2.4.1.1) does not require a fit it is not susceptible to this noise. As a result, for measuring the 

effective index, the technique that measures phase directly using the phase of a Fourier transform would be the best 

way to measure the effective index. A summary of the capabilities of each measurement type follows in Table E.2.1. 

Table E.2.1: Capabilities of each measurement type 

Measurement USI (FT Phase) USI (FT Amplitude) BSI/VRI 

Effective index (phase) √   

Group index (group delay)  √
* 

√ 

Second order dispersion   √ 
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Appendix F: Matlab code  

F.1. Matlab code to simulate SMF28 
clear all 

close all 

clc 

format long 

  

% Part 1 - Generate neff curve for GeO2 doped silica fiber using weighted average in Kobyashi Paper 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 1. a) Declare all values for SMF28 

a = 3.88e-6;          % Spec is a = 4.1e-6   (3.88e-6)   

Lf = 0.200577;            

NA_1310 = 0.1228;    % NA_1310 = 0.1227 Spec is 0.14 but this was adjusted so that the Specs Ng(1550nm) = 

1.4682 and refractive index difference  <0.36%  (Used 0.109) 

Vnumber_1310 = (2*pi/(1310*10^-9))*a*NA_1310 

% 1. b) Declare all values for the simulation 

wavestep = 0.001; 

wavestart = 1.470;      

wavestop = 1.605; 

neff_step = 0.5*10^-7;    % Resolution of neff step calculation (Resolution of LS = RS measurement) 

  

% 1. b) Solve for A given delta_n  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

lambda_sim = 1.310;   % micron units   -- This is the wavelength where delta_n is as indicated 

% Cladding Kobyashi 

Aa1 = 0.6961663; Aa2 = 0.4079426; Aa3 = 0.8974994; Ab1 = 0.004679148; Ab2 = 0.01351206; Ab3 = 97.934002; 

nclad_1310 = ( 1 +((Aa1*lambda_sim.^2)./(lambda_sim.^2-Ab1)) + ((Aa2*lambda_sim.^2)./(lambda_sim.^2-Ab2)) + 

((Aa3*lambda_sim.^2)./(lambda_sim.^2-Ab3)) ).^(0.5); 

  

% Core at 1310nm 

ncore_1310 = sqrt(NA_1310^2 + nclad_1310^2); 

delta_n = ncore_1310 - nclad_1310; 

  

% Core Ge02 3.5m% Doped 

Ca1 = 0.7042038; Ca2 = 0.4160032; Ca3 = 0.9074049; Cb1 = 0.00264623; Cb2 = 0.0166823; Cb3 = 97.93390; 

ncore2_1310 = ( 1 +((Ca1*lambda_sim.^2)./(lambda_sim.^2-Cb1)) + ((Ca2*lambda_sim.^2)./(lambda_sim.^2-Cb2)) + 

((Ca3*lambda_sim.^2)./(lambda_sim.^2-Cb3)) ).^(0.5); 

  

% Core Ge02 5.8m% Doped 

Da1 = 0.7088896; Da2 = 0.4206803; Da3 = 0.8956551; Db1 = 0.00370945; Db2 = 0.01573806; Db3 = 97.93402; 

ncore3_1310 = ( 1 +((Da1*lambda_sim.^2)./(lambda_sim.^2-Db1)) + ((Da2*lambda_sim.^2)./(lambda_sim.^2-Db2)) + 

((Da3*lambda_sim.^2)./(lambda_sim.^2-Db3)) ).^(0.5); 

  

A = (ncore3_1310 - (ncore_1310)) / (ncore3_1310 - ncore2_1310); 

  

  

% 1. c) Plot the curve for the new core index ncoreNew  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

lambda_sim = wavestart:wavestep:wavestop;   % micron units 

% Cladding Kobyashi 

Aa1 = 0.6961663; Aa2 = 0.4079426; Aa3 = 0.8974994; Ab1 = 0.004679148;  Ab2 = 0.01351206; Ab3 = 97.934002; 

nclad = ( 1 +((Aa1*lambda_sim.^2)./(lambda_sim.^2-Ab1)) + ((Aa2*lambda_sim.^2)./(lambda_sim.^2-Ab2)) + 

((Aa3*lambda_sim.^2)./(lambda_sim.^2-Ab3)) ).^(0.5); 

  

% Core Ge02 3.5m% Doped 

Ca1 = 0.7042038; Ca2 = 0.4160032; Ca3 = 0.9074049; Cb1 = 0.00264623; Cb2 = 0.0166823; Cb3 = 97.93390; 

ncore2 = ( 1 +((Ca1*lambda_sim.^2)./(lambda_sim.^2-Cb1)) + ((Ca2*lambda_sim.^2)./(lambda_sim.^2-Cb2)) + 

((Ca3*lambda_sim.^2)./(lambda_sim.^2-Cb3)) ).^(0.5); 

  

% Core Ge02 5.8m% Doped 

Da1 = 0.7088896; Da2 = 0.4206803; Da3 = 0.8956551; Db1 = 0.00370945; Db2 = 0.01573806; Db3 = 97.93402; 

ncore3 = ( 1 +((Da1*lambda_sim.^2)./(lambda_sim.^2-Db1)) + ((Da2*lambda_sim.^2)./(lambda_sim.^2-Db2)) + 

((Da3*lambda_sim.^2)./(lambda_sim.^2-Db3)) ).^(0.5); 

  

ncoreNew = A*ncore2 + (1-A)*ncore3;   % New core index using weighted average of core idices that produce index 

steps between 0.008876 and 0.01222  

  

  

% 2. a) Simulate neff for the modes  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

lambda = lambda_sim;                         % Stay in micron units 

n2_wavelength = nclad; 

n1_wavelength = ncoreNew;  

  

for j=1:round(((wavestop-wavestart)/wavestep)+1)                
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    ko = 2*pi/(lambda(j)*10^-6); 

    neff = n2_wavelength(j)+(10^-20):(neff_step):n1_wavelength(j)-(10^-20); 

    u = ko*a*(n1_wavelength(j)^2 - neff.^2).^(0.5); 

    w = ko*a*(neff.^2 - n2_wavelength(j)^2).^(0.5); 

    v = ko*a*(n1_wavelength(j)^2 - n2_wavelength(j)^2)^(0.5); 

    LS = (besselj(0,u)./ (u.*besselj(1,u))); 

    RS = (besselk(0,w) ./ (w.*besselk(1,w))); 

    LP0m = LS - RS; 

    % Find the zero crossings - Two zero crossings will be found 

    count = 1; 

    for k=1:length(LP0m)-1 

        if ((LP0m(k) <= 0) && (LP0m(k+1)>= 0)) 

            %uvalue(count) = u(k);                                                     % No linear 

interpolation 

            uvalue(count) = (u(k+1)-u(k))*((-1*LP0m(k))/(LP0m(k+1)-LP0m(k))) + u(k);   % Linear interpolation 

for higher accuracy 

            count = count + 1; 

        end 

    end    

    neff01(j) = (n1_wavelength(j)^2 - (uvalue(length(uvalue))^2/(ko*a)^2))^0.5; 

end 

  

Clight = 299792458.6;  % m/s 

  

  

% 4. a) Numerical differentiation to obtain simulated group delay and dispersion directly from calculated 

values (i.e. No fit)  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Group delay (ps) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% numerical differentiation 

dlambda = diff(lambda); 

dneff01 = diff(neff01);  

  

% make same size 

neff01 = neff01(1:length(neff01)-1); 

lambda  = lambda(1:length(lambda)-1); 

  

% Generate Group Index values 

Ng01 = neff01 - (lambda .* (dneff01 ./ dlambda)); 

GD01 = (Ng01/299792458.6)*10^12*Lf;   % Group delay in ps 

  

% Fit to directly calculated Group Delay  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% GD01_fit = polyfit(lambda, GD01, 2);         % Fit vs. lambda in um units then convert to nm units so that 

slope is in ps/nm 

% D01_fitted(1) = 2*GD01_fit(1); 

% D01_fitted(2) = 1*GD01_fit(2); 

% D01_simulated = polyval(D01_fitted, lambda)*10^-3;   % *10^-3 to convert to per nm units 

  

GD01_fit = polyfit(lambda, GD01, 4);         % Fit vs. lambda in um units then convert to nm units so that 

slope is in ps/nm 

D01_fitted(1) = 4*GD01_fit(1); 

D01_fitted(2) = 3*GD01_fit(2); 

D01_fitted(3) = 2*GD01_fit(3); 

D01_fitted(4) = 1*GD01_fit(4); 

D01_simulated = polyval(D01_fitted, lambda)*10^-3;   % *10^-3 to convert to per nm units 

  

  

% Dispersion using equation in SMF spec sheet 

So = (0.086/1000);   % ps/nm^s-m   % Note: spec reads So = 0.086 ps/nm^2-km  

lambda0_sim = 1313;  % nm 

D_eqtn = (So/4)*(lambda*10.^3 - (lambda0_sim^4 ./(lambda*10^3).^3))*Lf;    %ps/nm 

  

% 5. Import Experimental Measurement Data  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

load DVRI_Wavelength.txt  % Wavelength in nm 

load DVRI_GroupDelay.txt  % Group Delay in ps units 

load DVRI_Dispersion.txt  % Dispersion in ps/nm units 

  

load VRI_Wavelength.txt  % Wavelength in nm 

load VRI_GroupDelay.txt  % Group Delay in ps units 

load VRI_Dispersion.txt  % Dispersion in ps/nm units 

  

% 6. Output Results 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

figure 

plot(lambda*10^3, GD01, DVRI_Wavelength, DVRI_GroupDelay, '.', VRI_Wavelength, VRI_GroupDelay, 'x' ) 

xlabel('Wavelength (nm)') 

ylabel('Group Delay (ps/m)') 

title('Numerically Computed values for Group Delay vs. wavelength') 
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legend('GD01 Matlab sim', 'GD01 Measured DVRI', 'GD01 Measured VRI') 

  

figure 

plot(lambda*10^3, D01_simulated,lambda*10^3, D_eqtn, DVRI_Wavelength, DVRI_Dispersion, '.', VRI_Wavelength, 

VRI_Dispersion, 'x' ) 

xlabel('Wavelength (nm)') 

ylabel('D (ps/nm)') 

title('D from fit to Numerically Computed values for GD') 

legend('D01 from Matlab sim','D01 from SMF28 spec sheet Eqtn', 'D01 from DVRI measurement', 'D01 from VRI 

measurement') 

  

% 6. Check compliance with specified parameters  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

lambda_1550_index = 0; 

for i = 1:length(lambda) 

    if lambda(i) == 1.55 

        lambda_1550_index = i; 

    end 

end 

lambda(lambda_1550_index) 

Ng_at_1550 = Ng01(lambda_1550_index) 

percentdiff_1310 = (delta_n/ncore_1310)*100 

  

% 7. Ouput simulated values for group delay and dispersion x length (to put in Excel file) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% output1 = [lambda*10^3; GD01]'; 

% dlmwrite('GroupDelay_simulation.txt', output1 , 'delimiter', '\t','newline', 'pc', 'precision', 10) 

%  

% output2 = [lambda*10^3; D01_simulated]'; 

% dlmwrite('Dispersion_simulation.txt', output2 , 'delimiter', '\t','newline', 'pc', 'precision', 10) 
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